АНАЛИТИЧЕСКАЯ ХИМИЯ

Кислотно-основное титрование (метод нейтрализации)

Кислотно-основное титрование

В основе – кислотно-основные реакции

Ацидиметрическое титрование (ацидиметрия) — метод определения сильных и слабых оснований, солей слабых кислот, основных солей и других соединений, обладающих основными свойствами, путем титрования стандартным раствором сильной кислоты (HCl, H₂SO₄).

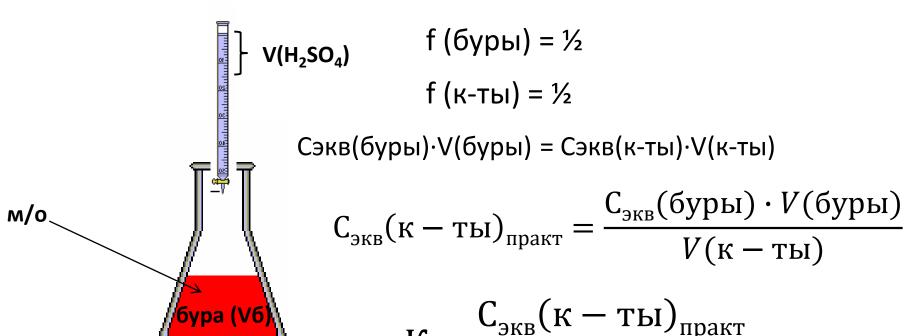
Кислотно-основное титрование

Алкалиметрическое титрование (алкалиметрия)

– метод определения сильных и слабых кислот, кислых солей, солей слабых оснований путем титрования стандартным раствором сильного основания (КОН, NaOH).

Ацидиметрия

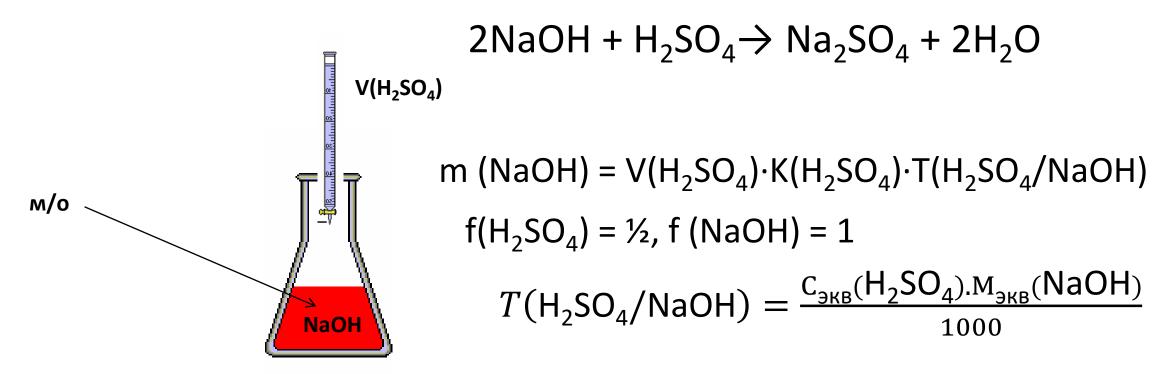
Титрант по точной навеске готовить нельзя


 $HCl-летуча; H_2SO_4-гигроскопична$

Готовят раствор приблизительно нужной концентрации и проводят стандартизацию по установочному веществу – $Na_2B_4O_7\cdot 10H_2O$, Na_2CO_3 и др.

$$m(буры) = \frac{C_{_{ЭКВ}}(буры) \cdot M_{_{ЭКВ}}(буры) \cdot V(p - pa)}{1000}$$
$$C_{_{ЭКВ}(буры)_{практ}} = \frac{m_{_{T-H}}(буры) \cdot 1000}{M_{_{ЭКВ}}(буры) \cdot V(p - pa)}$$

Ацидиметрия. Стандартизация титранта


$$Na_2B_4O_7 + H_2SO_4 + 5H_2O \rightarrow 4H_3BO_3 + Na_2SO_4$$

$$K = \frac{C_{_{ЭКВ}}(\kappa - Tы)_{_{Практ}}}{C_{_{ЭКВ}}(\kappa - Tы)_{_{Teop}}}$$

Прямое титрование

Определение содержания щелочи в растворе

$$w(NaOH) = \frac{V(H_2SO_4) \cdot K(H_2SO_4) \cdot T(\frac{H_2SO_4}{NaOH})}{a (NaOH)} \cdot 100 (\%)$$

 $= \frac{V(H_{2}SO_{4}) \cdot K(H_{2}SO_{4}) \cdot T(^{H_{2}SO_{4}}/_{NaOH}) \cdot V\kappa}{V\pi}$ $= \frac{V(H_{2}SO_{4}) \cdot K(H_{2}SO_{4}) \cdot T(^{H_{2}SO_{4}}/_{NaOH}) \cdot V\kappa}{a (NaOH) \cdot V\pi} \cdot 100$ m(NaOH) = -

$$w(NaOH) = \frac{V(H_2SO_4) \cdot K(H_2SO_4) \cdot T(^{H_2SO_4}/NaOH) \cdot V\kappa}{a (NaOH) \cdot V\pi} \cdot 100$$

метод пипетирования

Применение ацидиметрии в фармацевтическом анализе

Количественное определение <u>натрия бензоата и натрия</u> <u>салицилата</u> (прямое титрование)

Индикатор – метиловый оранжевый

Титрование проводят в присутствии эфира

$m(6.Na) = V(HCI) \cdot K(HCI) \cdot T(HCI/6.Na)$

$$w(6.Na) = \frac{V(HCl) \cdot K(HCl) \cdot T(\frac{HCl}{6.Na})}{a (6.Na)} \cdot 100 (\%)$$

$$T(\text{HCl/6. Na}) = \frac{C_{\text{экв}}(\text{HCl}).\text{M}_{\text{экв}}(\text{б. Na})}{1000}$$

$$f(\text{HCl})=1, \ f(\text{б.Na})=1$$

$$T(\text{HCl/6. Na}) = \frac{C(\text{HCl}).\text{M}(\text{б. Na})}{1000}$$

Количественное определение гексаметилентетрамина (ГМТА)

Прямое титрование

$$N_4(CH_2)_6 + HCI \rightarrow N_4(CH_2)_6 \cdot HCI$$

$$m(\Gamma MTA) = V(HCI) \cdot K(HCI) \cdot T(HCI/\Gamma MTA)$$

$$f(HCI)=1$$
, $f(\Gamma MTA)=1$

$$T(HCl/\Gamma MTA) = \frac{C(HCl).M(\Gamma MTA)}{1000}$$

Количественное определение гексаметилентетрамина (ГМТА)

Обратное титрование

$$N_4(CH_2)_6 + 2H_2SO_{4\mu36} + 6H_2O \rightarrow 6CH_2O + 2(NH_4)_2SO_4$$

$$H_2SO_{4oct} + 2NaOH \rightarrow Na_2SO_4 + H_2O$$

 $m(\Gamma MTA) = (V(H_2SO_4)\cdot K - V(NaOH)\cdot K)\cdot T(H_2SO_4/\Gamma MTA)$

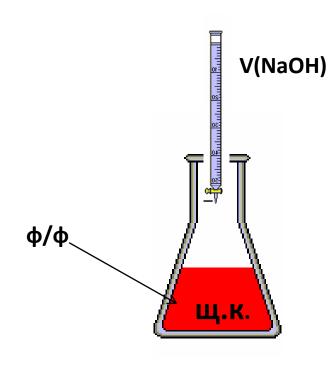
f (Γ MTA)=1/4, f(H_2SO_4)=1/2

$$T(H_2SO_4/\Gamma MTA) = \frac{C_{3KB}(H_2SO_4).M_{3KB}(\Gamma MTA)}{1000}$$

Количественное определение формальдегида (косвенное титрование)

$$HC \stackrel{O}{\leftarrow} H + Na_2SO_3 + H_2O \longrightarrow HC \stackrel{OH}{\leftarrow} SO_3H + NaOH$$

NaOH + HCl
$$\rightarrow$$
 NaCl + H₂O
m(ϕ)=V(HCl)·K(HCl)·T(HCl/ ϕ)
f(HCl)=1, f(ϕ)=1


$$T(HCl/\phi) = \frac{C(HCl) \cdot M(\phi)}{1000}$$

Алкалиметрическое титрование (алкалиметрия) — метод определения сильных и слабых кислот, кислых солей, солей слабых оснований путем титрования стандартным раствором сильного основания (КОН, NaOH)

Титрант по точной навеске приготовить нельзя — щелочи гигроскопичны и поглощают углекислый газ воздуха. Готовят раствор приблизительно нужной концентрации и проводят стандартизацию по установочному веществу — гидрофталат калия, щавелевая кислота, янтарная кислота, бензойная кислота и др.

Алкалиметрия. Стандартизация титранта

$$H_2C_2O_4 + 2NaOH \rightarrow Na_2C_2O_4 + 2H_2O$$

Сэкв(щ.к.) \cdot V(щ.к.) = C(NaOH) \cdot V(NaOH)

$$C_{_{\mathfrak{I}KB}}(_{\mathsf{NaOH}})_{\mathrm{практ}} = \frac{C_{_{\mathfrak{I}KB}}(\mathsf{ULK.}) \cdot V(\mathsf{ULK.})}{V(_{\mathsf{NaOH}})}$$

$$K(NaOH) = \frac{C(NaOH)практ}{C(NaOH)теор}$$

Применение алкалиметрии в фармацевтическом анализе

Количественное определение **кислоты бензойной (салициловой)** – прямое титрование

Индикатор – фенолфталеин

В присутствии спирта (для предотвращения гидролиза бензоата натрия) – в этом случае проводят контрольный опыт

m(б.к.) = V(NaOH)·K·T(NaOH/б.к.)

$$w(6. \text{ K.}) = \frac{V(NaOH) \cdot K(NaOH) \cdot T(\frac{NaOH}{6. \text{ K.}})}{a(6. \text{ K.})} \cdot 100 \text{ (\%)}$$
 $f(NaOH)=1, f(6. \text{ K.}) = 1$

$$T(NaOH/$$
 б. к.) = $\frac{C(NaOH). M(б. к.)}{1000}$

m(б.к.) = (V(NaOH)оп - V(NaOH)контр)·K·T(NaOH/б.к.)

$$(V(NaOH) oп - V(NaOH) контр) \cdot K(NaOH) \cdot T(^{NaOH}/_{б. \, K.})$$

$$w(б. \, к.) = \frac{}{a \, (б. \, к.)} \cdot 100 \, (\%)$$

Количественное определение кислоты аскорбиновой – прямое титрование

 $m(ack.k.) = V(NaOH) \cdot K \cdot T(NaOH/ack.k.)$

$$V(NaOH) \cdot K(NaOH) \cdot T(NaOH/_{ack. k.})$$
 $T(NaOH/_{ack. k.}) = \frac{C(NaOH) \cdot M(ack. k.)}{1000}$ $w(ack. k.) = \frac{a(ack. k.)}{a(ack. k.)}$

Количественное определение новокаина – прямое титрование

$$H_{2}N$$
 $C_{2}H_{5}$
 $C_{2}H_{5}$
 $C_{2}H_{5}$
 $C_{2}H_{5}$
 $C_{2}H_{5}$

$$H_2N$$
 C_2H_5
 C_2H_5
 C_2H_5
 C_2H_5
 C_2H_5

$$m(hob) = V(NaOH) \cdot K \cdot T(NaOH/hob)$$

$$T(NaOH/hob) = \frac{C(NaOH) \cdot M(hob)}{1000}$$
 $V(NaOH) \cdot K(NaOH) \cdot T(\frac{NaOH}{hob})$

$$V(NaOH) \cdot K(NaOH) \cdot T(^{NaOH}/_{HOB})$$
 $w(HoB) = \frac{}{a (HoB)} \cdot 100 (\%)$

Количественное определение хлоралгидрата – обратное титрование

NaOHoct + HCl \rightarrow NaCl + H₂O

 $m(x/r) = (V(NaOH)\cdot K - V(HCI)\cdot K)\cdot T(HCI/x/r)$

$$w(x/r) = \frac{(V(NaOH) \cdot K - V(HCl) \cdot K) \cdot T(\frac{HCl}{x/r})}{a(x/r)} \cdot 100 (\%)$$

$$T(HCl/x/r) = \frac{C(HCl) \cdot M(x/r)}{1000}$$

Количественное определение ментола — заместительное титрование (метод ацетилирования)

$$CH_3COOH + NaOH \rightarrow CH_3COONa + H_2O$$

$$m(M) = V(NaOH) \cdot K \cdot T(NaOH/M)$$

$$V(NaOH) \cdot K \cdot T(\frac{NaOH}{M})$$

$$w(M) = \frac{1000}{a(M)} \cdot 100(\%)$$

$$T(NaOH/M) = \frac{C(NaOH).M(M)}{1000}$$

Индикаторы кислотно-основного титрования

Индикатор

Это вещество, которое проявляет видимое изменение в точке эквивалентности или вблизи ее

Требования, предъявляемые к кислотно-основным индикаторам

- Окраска должна быть интенсивной и различаться в кислотной и щелочной среде
- Изменение окраски должно быть быстрым, четким и обратимым
- Окраска должна меняться в узком интервале изменения рН раствора
- Присутствии минимального избытка кислоты или щелочи
- Должен быть стабильным, не разлагаться в водном растворе и на воздухе

Теории кислотно-основных индикаторов

- Ионная
- 2. Хромофорная
- 3. Ионно-хромофорная

Ионная теория

КО индикаторы — слабые кислоты или слабые основания, подвергающиеся ионизации в водных растворах, при этом нейтральная и ионизированная формы индикатора обладают различной окраской

$$HInd \rightarrow H^+ + Ind^-$$

красный синий

Хромофорная теория

Наличие окраски КО индикаторов обусловлено присутствием в молекулах индикаторов хромофорных групп (хромофоров): - N=N-, =C=S, -N=O и др.

Индикаторы в растворе присутствуют в виде различных таутомерных форм с различными хромофорными группами. Разные хромофорные группы придают неодинаковую окраску таутомерным формам индикатора.

Хромофорная теория

$$(\mathrm{CH_3})_2\,\mathrm{N}$$
 — N — N — $\mathrm{SO_3H}$ Желтая форма

$$(CH_3)_2$$
 $N \longrightarrow N \longrightarrow N \longrightarrow SO_3$

Красная форма

Ионно-хромофорная теория

КО индикаторы — слабые кислоты и основания, нейтральная молекула индикатора и ее ионизированная форма содержат разные хромофорные группы.

Интервал перехода КО индикатора

Это область концентрации ионов водорода, в пределах которой глаз способен обнаружить изменения в оттенке, интенсивности окраски визуального индикатора, вызванное изменением соотношения двух соответствующих форм индикатора

$HInd \rightarrow H^+ + Ind^-$

$$K_a = \frac{[H^+] \cdot [Ind^-]}{[HInd]}$$

$$[H^+] = \frac{K_a \cdot [HInd]}{[Ind^-]}$$

$$pH = pK_a + lg \frac{[Ind^-]}{[HInd]}$$

$$\frac{[Ind^-]}{[HInd]} \ge 10$$
 - окраска ионной формы

$$pH = pK_a + lg10$$

$$\mathrm{pH}=\mathrm{pK}_a+1$$
 - наблюдается окраска ионной формы

$$rac{[ext{Ind}^-]}{[ext{HInd}]} \leq rac{1}{10}$$
 - окраска молекулярной формы $ext{pH} = ext{pK}_a + ext{lg} rac{1}{10}$

$$\mathrm{pH} = \mathrm{pK}_a - 1$$
 - окраска молекулярной формы

Показатель титрования рТ

Значение рН, при котором происходит изменение цвета индикатора (наблюдатель отчетливо отмечает изменение окраски и признает титрование законченным).

Классификация индикаторов

- □ По способу применения:
- 1. Внутренние добавляют непосредственно в титруемый раствор
- 2. Внешние находятся вне титруемого раствора (индикаторная бумага)
- По составу:
- 1. Индивидуальные
- 2. Смешанные смесь двух индикаторов или индикатора и красителя
- По цветности:
- 1. Одноцветные (фенолфталеин)
- 2. Двухцветные

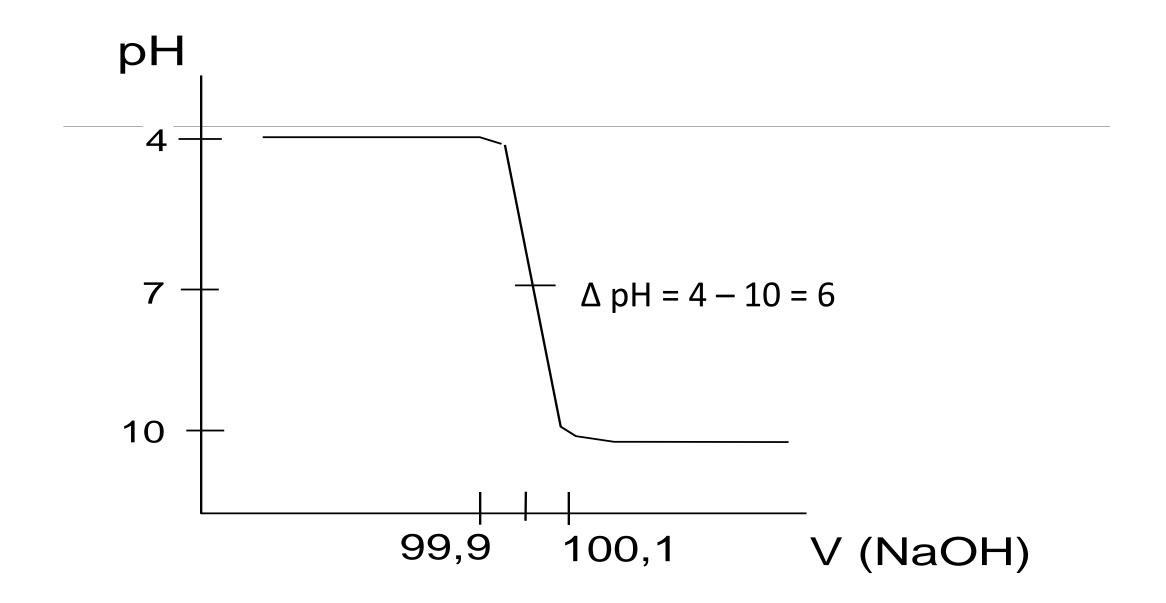
Кривые КО титрования

Кривые титрования

- Графическое представление процесса титрования.
- Зависимость изменения pH титруемого раствора от объема прибавленного титранта
- Анализ кривых титрования позволяет указать оптимальные условия проведения титрования
- Рассчитывают рН титруемого раствора в разные моменты титрования: для исходного раствора, до ТЭ, в ТЭ и после ТЭ.

Титрование сильной кислоты сильным основанием

$$HCI + NaOH \rightarrow NaCI + H_2O$$


100 мл HCl

Концентрация HCl – С моль/л;

Концентрация NaOH – С моль/л

- 1. Исходный раствор pH= lgC (в растворе только HCl)
- 2. До ТЭ pH= lgC
- 3. В ТЭ: pH=7 (в растворе NaCl)
- 4. За ТЭ: pH = 14 + lgC (определяется NaOH)

Добавлено NaOH, мл	Оттитровано HCl, %	Остаток HCl, %	Концентрация HCl	рН	рН для С=0,1моль/л
0	-	100	С	-lgC	1
90	90	10	0,1C	1-lgC	2
99	99	1	0,01C	2-lgC	3
99,9	99,9	0,1	10 ⁻³ C	3-lgC	4
100	100	-	-	7	7
		Избыток NaOH, %	Концентрация NaOH		
100,1		0,1	10 ⁻³ C	14-3+lgC	10
101		1	0,01C	12+lgC	11
110		10	0,1C	13+lgC	12

Выбирают индикатор, рТ которого находится в интервале ΔрН кривой титрования. Значение рТ д.б. как можно ближе к значению рН в ТЭ.

- метиловый оранжевый рТ=4
- метиловый красный рТ=5,5
- бромтимоловый синий pT=7
- фенолфталеин рТ=9

Факторы, влияющие на скачок pH на кривой титрования

$$\Delta pH = pH_{100,1} - pH_{99,9}$$

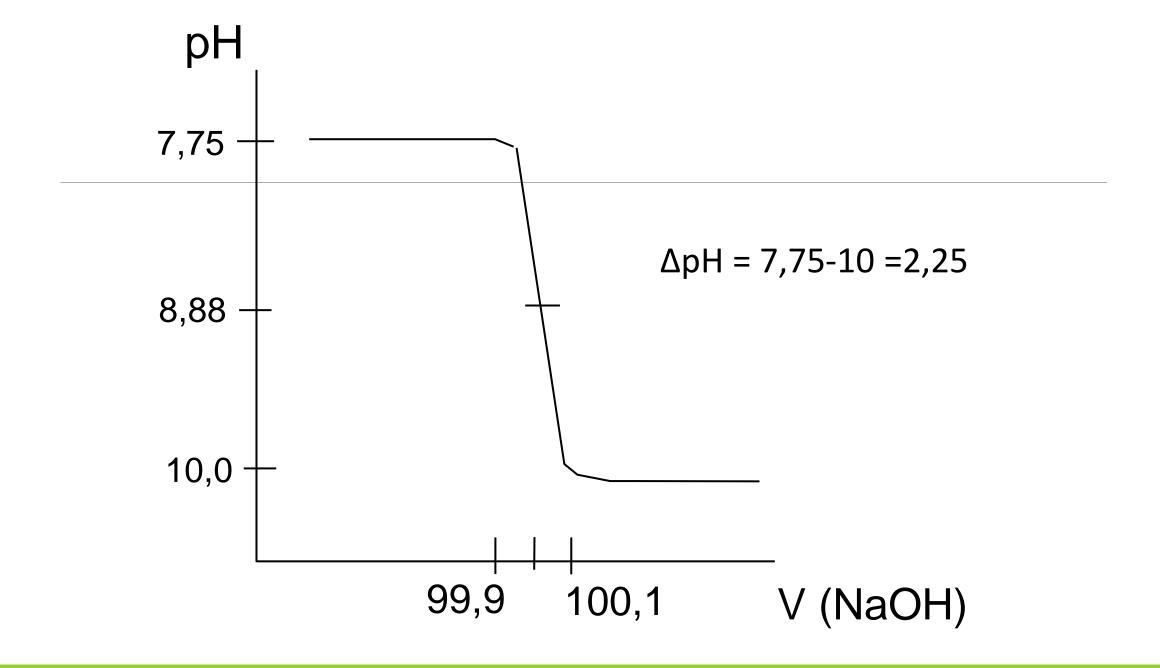
$$100,1$$
 pH= $14-3+lgC$

∆рН – зависит от температуры и концентрации титранта

Кривая титрования слабой кислоты сильным основанием

$$CH_3COOH + KOH \rightarrow CH_3COOK + H_2O$$

- 1. Исходный раствор $pH = \frac{1}{2} pK_{K-Tы} \frac{1}{2} lgC_{K-Tы}$
- 2. До ТЭ $CH_3COOH + CH_3COOK буф.р-р$


$$pH = pK\kappa - ты + lg \frac{Ccoли}{C \kappa - ты}$$

3. В ТЭ - CH_3COOK (гидролиз)

$$pH=7+ \frac{1}{2} pK_{K-TЫ} + \frac{1}{2} IgC_{COЛИ}$$

4. За TЭ - KOH + CH₃COOK - pH=14+lgCoch

	бавлено аОН, мл	Оттитрова но к-ты, %	Концентра ция к-ты	Концентрац ия соли	Ссоли/Ск- ты	рН	рН для С=0,1моль /л
	0	-	С	-	-	1/2pK-1/2lgC	2,88
	90	90	0,1C	0,9C	~10	pK+1	5,75
	99,9	99,9	0,001C	0,999C	999	рК+3	7,75
ΔpH	100	100	-	С	-	7+1/2pK+1/2lgC	8,88
٥			Концентра ция осн-я				
	100,1		10 ⁻³ C			14-3+lgC	10
	101		0,01C			14-2+lgC	11
	110		0,1C			14-1+lgC	12

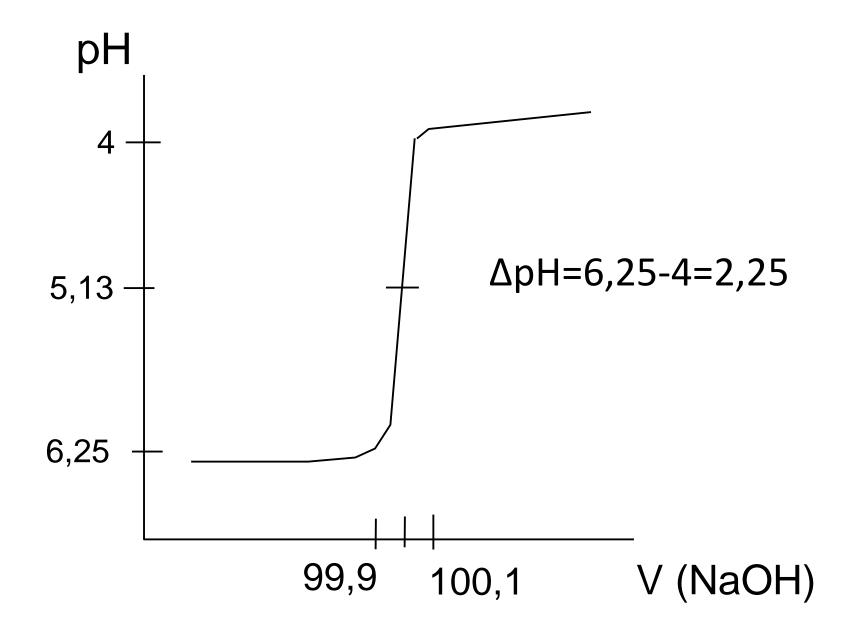
Факторы, влияющие на скачок pH на кривой титрования

$$\Delta pH = pH_{100,1} - pH_{99,9}$$

$$\Delta$$
pH =14-3+lgC-pK-3

ΔрН зависит от температуры, концентрации и рК кислоты

Кривая титрования слабого основания сильной кислотой


$$NH_4OH + HCI \rightarrow NH_4CI + H_2O$$

$$pH = 14 - pKoch - lg \frac{Ccoли}{Coch}$$

3. В ТЭ - NH_4CI (гидролиз)

4. За ТЭ — HCl + NH
$$_4$$
Cl pH= - lgСк-ты

Добавлено НСІ, мл	Оттитрова но осн, %	Концентра ция осн	Концентрац ия соли	Ссоли/Сос н	рН	рН для C=0,1моль /л	
99,9	99,9	10 ⁻³ C	0,999C	999	14-pK-3	6,25	
100	100	-	С	-	7-1/2pK-1/2lgC	5,13	
		Концентра ция к-ты					
100,1		10 ⁻³ C			3-lgC	4	

Индикаторные ошибки КО титрования

Индикаторные ошибки обусловлены несовпадением значений рН титруемого раствора в ТЭ и рТ индикатора в КТТ

- Водородная ошибка
- Гидроксильная ошибка
- Кислотная ошибка
- Основная ошибка

Водородная ошибка

Обусловлена некоторым избытком ионов Н+ в конце титрования (избыток сильной кислоты).

Может возникнуть при титровании сильной кислоты сильным основанием (если кислота недотитрована) или при титровании основания (слабого или сильного) сильной кислотой (если раствор будет перетитрован)

Водородная ошибка

$$X(H^+) = \frac{n'(H^+)\kappa.T.}{n(X)} \cdot 100\%$$

n'(H+)к.т. – количество ионов водорода в конце титрования

n(X) – количество веществ, взятое на титрование

$$n(X) = C(1/z X) \cdot V(X)$$

C(1/z X) – молярная концентрация эквивалента первоначально взятого вещества

V(X) – объем первоначально взятого вещества

$$n(H^+)_{K,T} = [H^+]_{K,T} \cdot V_{K,T}$$

 $V_{\kappa,\tau}$ – объем в конце титрования

$$V_{K,T} = V(X) + V(T)$$

$$X(H^{+}) = \frac{[H^{+}] \kappa. \tau. \cdot \left(V(X) + V(T)\right)}{C\left(\frac{1}{z}X\right) \cdot V(X)} \cdot 100\%$$

$$\begin{aligned} pH_{\text{K.T.}} &= pT_{lnd} \\ \left[H^{+}\right]_{\text{K.T}} &= 10^{-pH} = 10^{-pT} \\ X(H^{+}) &= \frac{\mathbf{10}^{-pT} \cdot \left(\mathbf{V}(\mathbf{X}) + \mathbf{V}(\mathbf{T})\right)}{C\left(\frac{1}{\mathbf{z}}\mathbf{X}\right) \cdot \mathbf{V}(\mathbf{X})} \cdot \mathbf{100\%} \end{aligned}$$

Задача

Вычислить ошибку титрования 0,2 н. раствора HCl 0,2 н. раствором NaOH с индикатором метиловым оранжевым.

Решение

рТ (м/о) = 4, ошибка водородная

$$X(H^{+}) = \frac{10^{-pT} \cdot \left(V(X) + V(T)\right)}{C\left(\frac{1}{z}X\right) \cdot V(X)} \cdot 100\%$$

V(X)=V(T)=1

$$X(H^+) = \frac{10^{-4} \cdot (1+1)}{0.2 \cdot 1} \cdot 100\% = 0.1\%$$

Индикаторная ошибка должна быть $\leq 0.1\%$

Гидроксильная ошибка

Обусловлена избытком ионов ОН⁻ в конце титрования (избыток сильного основания). Может возникнуть при титровании сильного основания сильной кислотой (если основание недотитровано) или при титровании кислоты (слабой или сильной) сильным основанием (если раствор будет перетитрован)

Гидроксильная ошибка

$$X(OH^{-}) = \frac{n'(OH^{-})\kappa. \tau.}{n(X)} \cdot 100\%$$

 $n'(OH^-)$ к.т. — количество гидроксид-ионов в конце титрования n(X) — количество веществ, взятое на титрование

$$pOH = 14 - pH = 14 - pT$$

$$[OH^{-}] = 10^{-(14 - pT)} = 10^{pT-14}$$

Гидроксильная ошибка

$$X(OH^-) = \frac{10^{pT-14} \cdot \left(V(X) + V(T)\right)}{C\left(\frac{1}{Z}X\right) \cdot V(X)} \cdot 100\%$$

Задача

Вычислить индикаторную ошибку титрования 0,2 н. раствора HCl 0,2 н. раствором NaOH с индикатором фенолфталеином

Решение

рТ (ϕ/ϕ) = 9, ошибка гидроксильная

$$X(OH^{-}) = \frac{10^{pT-14} \cdot \left(V(X) + V(T)\right)}{C\left(\frac{1}{Z}X\right) \cdot V(X)} \cdot 100\%$$

$$V(X)=V(T)=1$$

$$X(OH^{-}) = \frac{10^{9-14} \cdot (1+1)}{0.2 \cdot 1} \cdot 100\% = 0.01\%$$

Кислотная ошибка

Возникает, когда недотитровывают слабую кислоту сильным основанием

$$X(HA) = \frac{[HA]\kappa. \tau.}{[A^-]} \cdot 100\%$$

отношение концентрации недотитрованной кислоты в конце титрования к ее оттитрованной части

$$K_{K-TbI} = \frac{[H^+]_{K.T.} \cdot [A^-]_{K.T.}}{[HA]_{K.T.}}$$

$$\frac{[HA]_{K.T.}}{[A^-]_{K.T.}} = \frac{[H^+]_{K.T.}}{K_{K-Tbi}}$$

$$X(HA) = \frac{[H^+]_{K.T.}}{K_{K-Tbl}} \cdot 100\%$$

$$pH_{K.T.} = pT_{Ind}$$

$$[H^+]_{K,T} = 10^{-pH} = 10^{-pT}$$
 $K_{K-TM} = 10^{-pK}$

$$X(HA) = \frac{10^{-pT}}{10^{-pK_K - Th}} \cdot 100\%$$

$$X(HA) = 10^{pKK-TbI-pT} \cdot 100\%$$

Основная ошибка

Основная ошибка возникает, когда остается недотитрованным слабое основание

отношение концентрации неоттитрованного основания в конце титрования к его оттитрованной части

$$X(BOH) = \frac{[BOH] \kappa. \tau.}{[B^{\mp}]} \cdot 100\%$$

$$\frac{[\mathrm{BOH}]_{\mathrm{K.T.}}}{[\mathrm{B}^+]_{\mathrm{K.T.}}} = \frac{[\mathrm{OH}^-]_{\mathrm{K.T.}}}{K_{\mathrm{och}}}$$

$$X(BOH) = \frac{[OH^-]_{K.T.}}{K_{OCH}} \cdot 100\%$$

T.K.
$$[OH^-]_{K.T.} = 10^{pT-14}$$
 $K_{OCH} = 10^{-pKOCH}$

$$X(BOH) = \frac{10^{pT-14}}{10^{-pKoch}} \cdot 100\%$$

$$X(BOH) = 10^{pKoch + pT-14} \cdot 100\%$$

Задача

Вычислить ошибку титрования 0,1 н. раствора муравьиной кислоты 0,1 н. раствором сильного основания с индикатором метиловым красным

Решение

$$pT(M/K) = 5$$
 $pK(HCOOH) = 3,76$ $pH_{T.9.} = 7 + ½ pK_{K-Tы} + ½ lg C_{CONU} = 8,38$ Раствор недотитрован \Rightarrow ошибка кислотная $X(HA) = 10^{pKK-Tы-pT} \cdot 100\%$ $X(HA) = 10^{3,76-5} \cdot 100 = 5,7 \%$

Индикатор использовать нельзя.