
Методы фармакопейного анализа

3 КУРС, 5 СЕМЕСТР, 2021-2022 ГГ.

Спектроскопические методы анализа

Основаны на избирательном поглощении электромагнитного излучения анализируемым веществом, служат для исследования строения, идентификации и количественного определения

Created with BioRender.com

Спектроскопические методы анализа

- Спектрофотометрия в ультрафиолетовой (УФ) и видимой областях.
- Спектрометрия в инфракрасной (ИК) области.
- Атомно-эмиссионная спектрометрия (АЭС).
- Атомно-абсорбционная спектроскопия (ААС).
- 🔲 Флуориметрия.
- Спектроскопия ядерного магнитного резонанса (ЯМР).
- Масс-спектрометрия.
- Рамановская спектрометрия.
- Рентгеновская флуоресцентная спектрометрия.
- Рентгеновская порошковая дифрактометрия.

Диапазоны длин волн спектра

Ультрафиолетовая область: 200 – 380 нм

Видимая область: 380 – 750 нм

Ближняя инфракрасная область: 750 – 2500 нм

Фотоколориметрия

ОФС. 1.2.1.1.0012.18

Фотоколориметрия

- Метод количественного определения действующих веществ, основанный на измерении степени поглощения немонохроматического света испытуемым веществом с помощью фотоэлектроколориметров.
- Применим только для окрашенных прозрачных растворов.
- 🔲 Основан на использовании закона Бугера-Ламберта-Бера:

$$A = \varepsilon \cdot I \cdot C$$

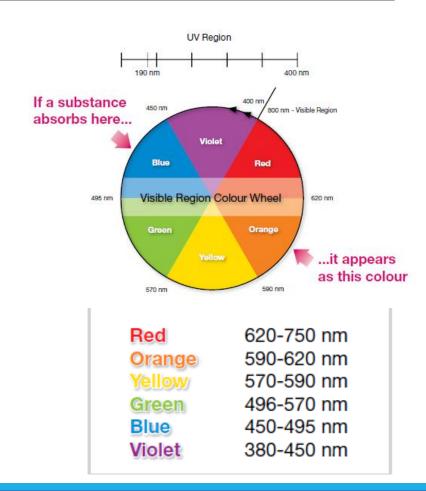
A – оптическая плотность,

I – толщина поглощающего слоя (ширина кюветы), см,

С – концентрация,

Е – молярный коэффициент поглощения.

Фотоколориметр



- □ Оптический прибор, использующийся для измерения оптической плотности растворов в узком диапазоне спектра.
- Измерения ведутся в луче не монохроматического, а полихроматического узко-спектрального света, формирующегося специальными светофильтрами.
- Используют для измерения оптической плотности в диапазоне 315-630 нм.

Светофильтры

- Выбирают, чтобы максимум и минимум поглощения определяемого вещества попадал в диапазон между максимумом пропускания и минимумом поглощения светофильтра.
- □ Светофильтры необходимо выбирать по окраске анализируемого раствора

Цвет раствора	Область макс. Поглощения (нм)	Цвет светофильтра
Желто-зеленый	400-450	Фиолетовый
Желтый	450-480	Синий
Оранжевый	480-490	Зелено-синий
Красный	490-500	Сине-зеленый
Пурпурный	500-560	Зеленый
Синий	575-590	Желтый
Зелено-синий	590-625	Оранжевый

Особенности метода

- □ погрешность 3-5 %;
- наименьшая ошибка достигается при оптической плотности 0,434;
- □ в интервале оптической плотности 0,30-0,70 ошибка составляет ±3%;
- простота и быстрота проведения;
- □ точность;
- нижние границы определяемых концентраций от 10⁻³ до 10⁻⁸ моль/л.

Спектрофотометрия в ультрафиолетовой и видимой областях

ОФС. 1.2.1.1.0003.15

Хромофорные группы

Вещества поглощают электромагнитное излучение за счет наличия хромофорных групп

C=C (180 HM)
$$-\pi \to \pi^*$$

C=O (280 HM) $-n \to \pi^*$
N=O (660 HM) $-n \to \pi^*$
-NO₂ (280 HM) $-n \to \pi^*$
C=S (240 HM) $-\pi \to \pi^*$

Закон Бугера-Ламберта-Бера

Оптическая плотность раствора прямо пропорциональна толщине поглощающего слоя и концентрации

$$A = \varepsilon \cdot | \cdot C$$

А – оптическая плотность,

I – толщина поглощающего слоя (ширина кюветы), см,

С – концентрация,

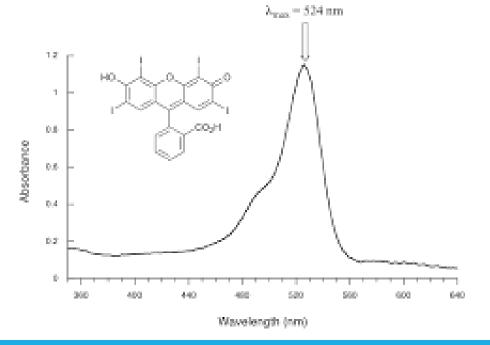
Е – молярный коэффициент поглощения.

Оптическая плотность и пропускание

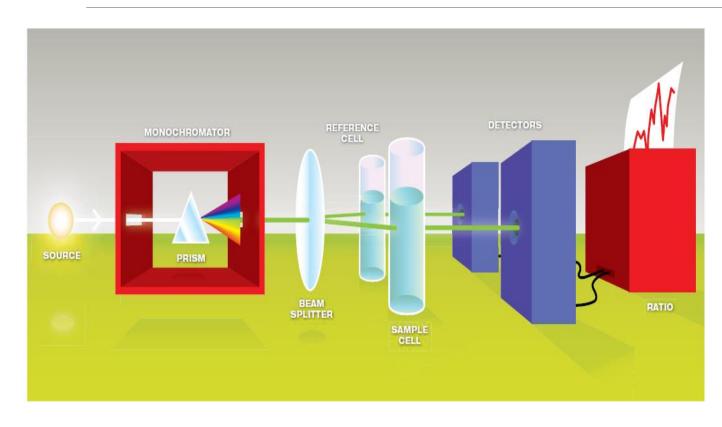
$$T = \frac{I_i}{I_0} \cdot 100 \%$$

$$A = lg \frac{I_0}{I_i}$$

Если нет других указаний в ФС, измерение оптической плотности проводят при указанной длине волны с использованием кювет с толщиной слоя 1 см, при температуре 20±1°С по сравнению с тем же растворителем или с той же смесью растворителей, в которой растворено вещество


Удельный и молярный показатели поглощения

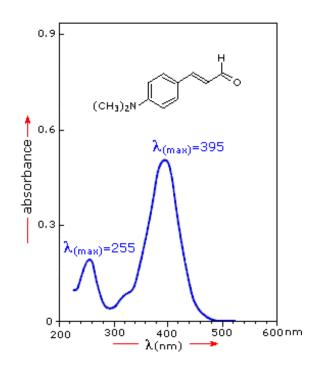
Удельный показатель поглощения $E^{1\%}$ - оптическая плотность 1% раствора при толщине поглощающего слоя 1 см


Молярный показатель поглощения ε - оптическая плотность 1 М раствора при толщине поглощающего слоя 1 см

Спектр поглощения

Спектр поглощения — графическая зависимость оптической плотности A (или ϵ , или T) от длины волны светового потока λ

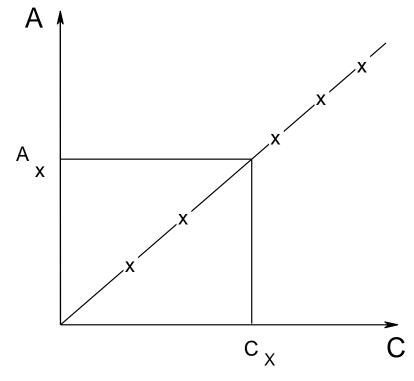
Спектрофотометр



Если нет других указаний в фармакопейной статье , измерение проводят с использованием кювет с толщиной слоя 1 см при температуре 20 ± 1 ° С по сравнению с тем же растворителем или той же смесью растворителей, в которой растворено вещество

Copyright © 2009 Royal Society of Chemistry www.rsc.org

Идентификация


- Сравнение спектров поглощения испытуемого раствора и раствора стандартого образца в указанной области спектра должно наблюдаться совпадение положений максимумов, минимумов, плеч и точек перегиба;
- •В нормативной документации указаны положения максимумов, минимумов, плеч и точек перегиба. Характеристики спектра поглощения испытуемого раствора должны совпадать с указанными (расхождение не должно превышать ± 2 нм).

Количественный анализ

Метод калибровочной кривой (нет в ГФ)

- •Готовят серию стандартных растворов с точно известной концентрацией
- Измеряют оптическую плотность растворов при заданных условиях
- Строят график зависимости оптической плотности от концентрации (по полученным данным)
- Измеряют оптическую плотность анализируемого раствора при заданных условиях
- •По калибровочной кривой определяют концентрацию анализируемого раствора

С использованием закона Бугера-Ламберта-Бера

- Измеряют оптическую плотность анализируемого раствора в кювете с толщиной поглощающего слоя 1 см
- Исходя из основного закона светопоглощения рассчитывают концентрацию анализируемого раствора:

$$Cx = \frac{Ax}{\mathbf{E} \cdot \mathbf{l}}$$

С использованием стандартного образца

- Готовят стандартный раствор с точно известной концентрацией, близкой к концентрации испытуемого раствора.
- Измеряют оптическую плотность раствора стандартного образца, приготовленного, как указано в ФС
- Измеряют оптическую плотность анализируемого раствора в тех же условиях

$$\frac{Ast}{Ax} = \frac{Cst}{Cx} \qquad Cx = \frac{Ax \cdot Cst}{Ast}$$

Многокомпонентный спектрофотометрический анализ

$$A=\sum E_i * c_i$$

А – оптическая плотность испытуемого раствора при данной длине волны

 $m{E_i}$ - показатели поглощения компонента образца при данной длине волны

 $oldsymbol{c_i}$ - концентрация компонента образца

Производная спектрофотометрия

- Исходные спектры поглощения (нулевого порядка) преобразуются в спектры производных первого, второго и более высоких порядков.
- Спектр первой производной график зависимости градиента кривой поглощения (скорость изменения оптической плотности от длины волны, $dA/d\lambda$) от длины волны.
- Спектр второй производной график зависимости кривизны спектра поглощения $(d^2A/d^2\lambda)$ от длины волны.

$$\frac{d^2A}{d\lambda^2} = \frac{d^2A_{1 \text{ CM}}^{1\%}}{d\lambda^2} \cdot \mathbf{C} \cdot \mathbf{l}$$

А – оптическая плотность при длине волны λ

 $A_{1\,\mathrm{CM}}^{1\,\%}$ - удельный показатель поглощения при длине волны λ

С – концентрация вещества в растворе, г/100 мл

l — толщина слоя, см

Задача 1

Рассчитайте содержание фуразолидона в таблетках, если навеску порошка растертых таблеток массой 0,1004 г растворили в мерной колбе вместимостью 25 мл. 0,6 мл полученного раствора довели водой до метки в мерной колбе вместимостью 100 мл. Оптическая плотность этого раствора при 360 нм в кювете с толщиной слоя 0,5 см составила 0,49. Удельный показатель поглощения стандартного образца фуразолидона в тех же условиях равен 985. Средняя масса 1 таблетки – 0,101.

Решение

X,
$$\Gamma = \frac{A \cdot P}{E \cdot l \cdot 100 \cdot a}$$

X,
$$\Gamma = \frac{0.49 \cdot 25 \cdot 100 \cdot 0.101}{0.1004 \cdot 0.5 \cdot 100 \cdot 985 \cdot 0.6} = 0.0417 \ \Gamma$$

Задача 2

0,0200 г индометацина поместили в мерную колбу на 100 мл и довели водой до метки. 5 мл полученного раствора перенесли в мерную колбу на 50 мл, довели водой до метки. Оптическая плотность полученного раствора при длине волны 318 нм составила 0,414. Рассчитайте содержание индометацина (%), если оптическая плотность раствора стандартного образца с концентрацией 0,00002 г/мл – 0,415.

Решение

X, % =
$$\frac{0.414 \cdot 0.00002 \cdot 100 \cdot 50 \cdot 100}{0.415 \cdot 5 \cdot 0.0200} = 99,76 \%$$