

● ОПОРНЫЙ ОБРАЗОВАТЕЛЬНЫЙ ПЕНТР


Когортные исследования (часть 1)

Хасанова Гульшат Рашатовна

зав. кафедрой эпидемиологии и доказательной медицины ФГБОУ ВО Казанский ГМУ Минздрава России, д.м.н., профессор Gulshat.hasanova@kazangmu.ru

План

- 1. Гипотеза исследования
- 2. Что такое когортное исследование?
- 3. Статистическая обработка результатов когортного исследования

Типы эпидемиологических исследований

Гипотеза исследования

Гипотеза представляет собой ядро исследования

Каждое исследование может иметь серию гипотез

Гипотезы могут уточняться в ходе исследования, но принципиально меняться не должны

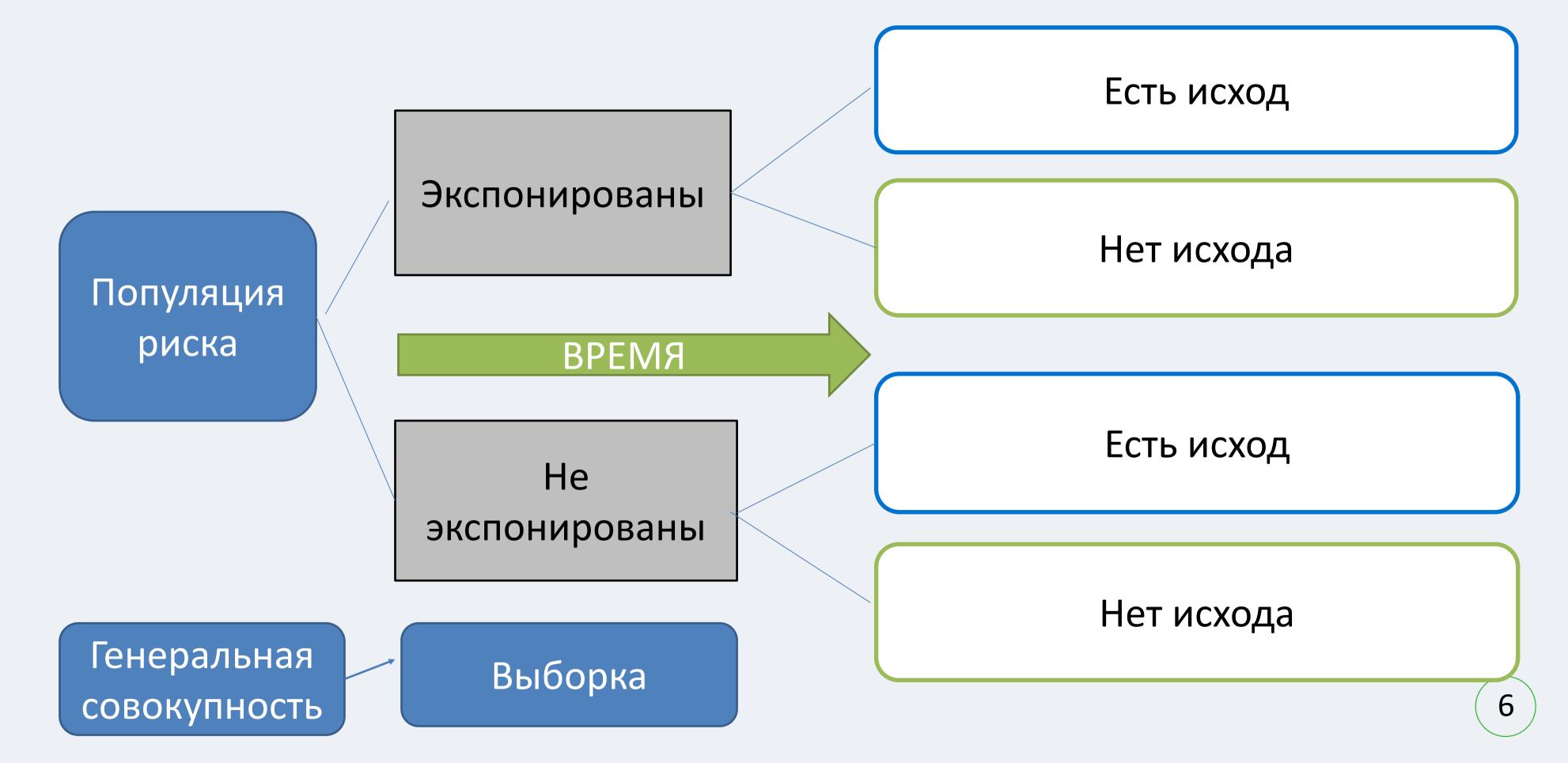
Гипотеза должна быть очевидна в публикуемом материале.

Гипотеза бывает нулевой и альтернативной

Гипотеза исследования

В гипотезе должно быть четко определено, что есть воздействие, что есть исход

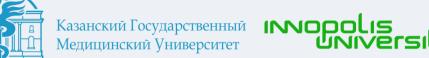
Гипотеза нужна для того, чтобы выбрать метод сбора данных = дизайн исследования


Гипотеза нужна для того, чтоб выбрать статистические методы

Когортные исследования

ОПОРНЫЙОБРАЗОВАТЕЛЬНЫЙ

Абсолютный риск


● ОПОРНЫЙ ОБРАЗОВАТЕЛЬНЫЙ ПЕНТР

	Исход имеется	Исхода нет	
Экспонированы	a	b	a + b
Неэкспонированы	С	d	c + d
	a + c	b + d	N = a + b + c + d

Re=
$$a/(a+b)$$

Rne = $c/(c+d)$

- ✓ Re –частота изучаемого исхода у лиц, подверженных воздействию определенного фактора (у экспонированных)
- ✓ Rne частота исхода среди неэкспонированных
- ✓ Диапазон [0;1]

Относительный риск (отношение рисков, отношение инцидентностей)

	Исход имеется	Исхода нет	
Экспонированы	a	Ь	a + b
Неэкспонированы	С	d	c + d
	a + c	b + d	N = a + b + c + d

- ✓ Относительный риск (RR) отношение абсолютных рисков
- ✓ Показывает, во сколько раз риск заболевания в группе, подверженной воздействию, выше в сравнении с группой, не подверженной воздействию.

$$RR = \frac{Re}{Rne} = \frac{\frac{a}{a+b}}{\frac{c}{c+d}}$$

✓ Не используется в исследованиях «случай-контроль»!

Интерпретация значений относительного риска

RR>1

Воздействие изучаемого фактора повышает риск исхода

RR < 1

Воздействие изучаемого фактора снижает риск исхода (протективный фактор)

RR = 1

Влияние фактора на исход в данном исследовании не подтверждено

Оценка статистической значимости полученных результатов

- ✓ Р вероятность ошибочного отклонения от нулевой гипотезы
- ✓ P < 0,05 (5%)
- ✓ Для проверки нулевой гипотезы критерий х², критерий Фишера, метод доверительных интервалов

Оценка статистической значимости полученных результатов

Критерий х2 - метод статистического анализа для сравнения двух и более пропорций при большом числе наблюдений (в данном случае, сравнение исходов среди экспонированных и неэкспонированных)

$$X^2 = (ad-bc)2 \times N / (a+c)(b+d)(a+b)(c+d)$$

При $X^2 > 3,84$ p < 0,05

Оценка статистической значимости полученных результатов

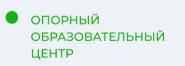
Метод Фишера - статистический анализ для оценки различий между 2 и более пропорциями при малом числе наблюдений (<5 хотя бы в одной клетке)

	Исход имеется	Исхода нет	
Экспонированы	30	60	90
Неэкспонированы	1	29	30
	21	79	N = 120

Оценка статистической значимости полученных результатов (метод доверительных интервалов)

Оцените 95%ДИ для RR:

- 1) RR = 2.12 (95%ДИ 1,03-4,36)
- 2) RR = 2.12 (95%ДИ 0,86-7,97)
- 3) RR = 2.12 (95%ДИ 1,69 -2,66)


- ✓ Пересекает ли ДИ «1»?
- ✓ Насколько широк ДИ?
- ✓ Каково прикладное значение полученных результатов?

Рекомендуемая литература

- 1. Флетчер Р., Флетчер С., Вагнер Э. Клиническая эпидемиология. Основы доказательной медицины; пер. с англ. М.: Медиа Сфера, 1998. 352 с. https://doi.org/10.14341/probl11773
- 2. Hulley S.B. et al. Designing Clinical Research. Fourth edition. Lippincott Williams & Wilkins, a Wolters Kluwer business, 2013.
- 3. Гринхальх Т. Основы доказательной медицины; пер. с англ. 4-е изд., перераб. и доп. М: ГЭОТАР-Медиа, 2015. 336 с.
- 4. Petrie A, Sabin C. Medical statistics at a Glance. Wiley Blackwell. 2016. 181 c.

Спасибо за внимание

