КАЗАНСКИЙ ГОСУДАРСТВЕННЫЙ МЕДИЦИНСКИЙ УНИВЕРСИТЕТ

МИКРОБИОЛОГИЧЕСКИЙ МОНИТОРИНГ. АНТИБИОТИКОРЕЗИСТЕНТНОСТЬ

Локоткова А.И.

к.м.н., доцент кафедры эпидемиологии и доказательной медицины КГМУ

ОБСУЖДАЕМЫЕ ВОПРОСЫ

- 1. Актуальность
- 2. История применения антибиотиков
- 3. Механизмы действия резистентности к антибиотикам у бактерий. Антибиотикорезистентные штаммы.
- 4. Профилактика антибиотикорезистентности.
- 5. Микробиологический мониторинг

АКТУАЛЬНОСТЬ

- Высокая распространенность резистентности госпитальных штаммов энтеробактерий к цефалоспоринам и карбопенемам
- Устойчивость практически ко всем β- лактамам, и быстрое распространение
- Механизмы устойчивости к широкому спектру антимикробных препаратов
- Инфекции с высоким уровнем летальности

АКТУАЛЬНОСТЬ

700 ТЫСЯЧ СМЕРТЕЙ В ГОД ОТ ИНФЕКЦИЙ, ВЫЗВАННЫХ АНТИБИОТИКОРЕЗИСТЕНТНЫМИ ШТАММАМИ

22 ТЫСЯЧИ СЛУЧАЕВ СМЕРТИ В ЕВРОПЕ

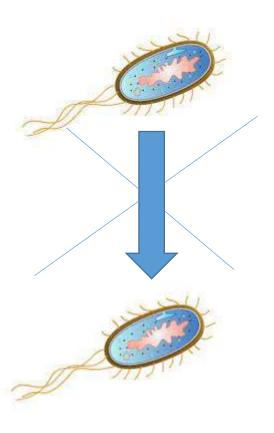
2 МИЛЛИОНА СЛУЧАЕВ ИНФИЦИРОВАНИЯ АНТИБИОТИКОРЕЗИСТЕНТНЫМИ ШТАММАМИ, В ТОМ ЧИСЛЕ 23 ТЫСЯЧИ СМЕРТЕЙ (США)

Прогноз ежегодных смертей от супербактерий к 2050 году

Источник: Доклад по заказу правительства Великобритании

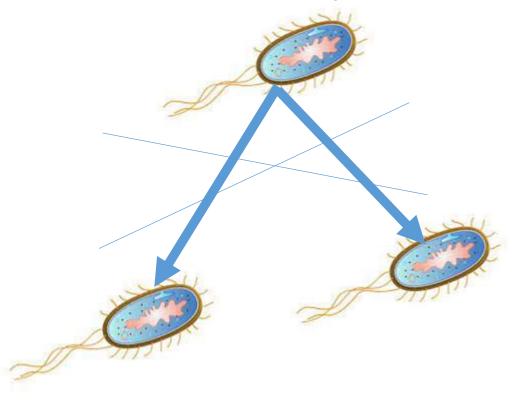
ESCMID

• Антибиотики - особые вещества, подавляющие размножение бактерий и вызывающие их гибель. В качестве лекарственных средств они употребляются для борьбы с заболеваниями, которые вызваны бактериями.



АНТИБИОТИКИ ХИМИОПРЕПАРАТЫ

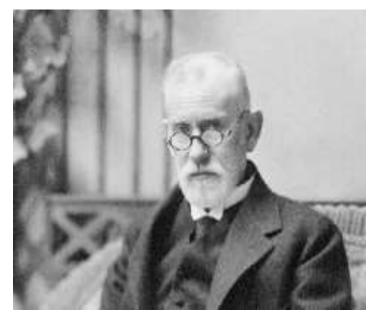
АНТИБИОТИКИ


АНТИБАКТЕРИАЛЬНЫЕ ПРЕПАРАТЫ

Бактерицидные АМП

Бактерицидные - необратимо связываются с клеточными мишенями, вызывая гибель чувствительных к ним микроорганизмов.

Бактериостатические АМП

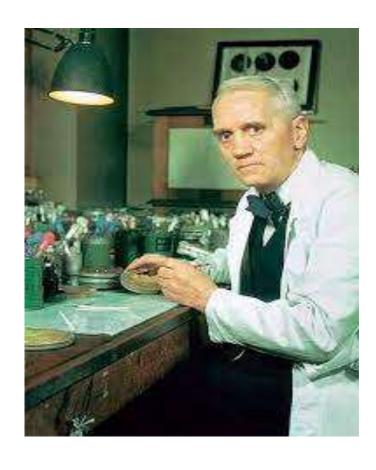


Бактериостатические -

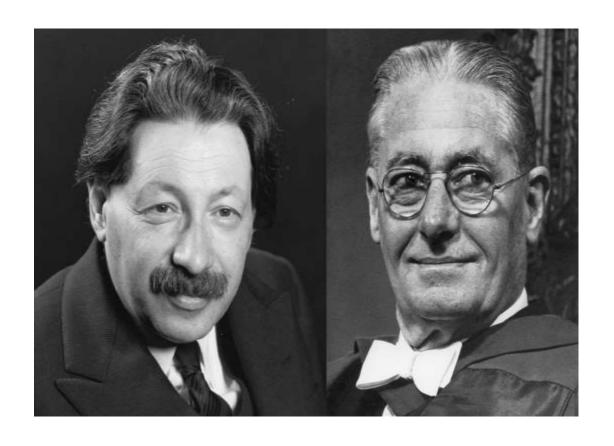
ингибируют рост и размножение микробных клеток, но при удалении антибиотика жизнедеятельность возбудителей восстанавливается

История применения антибиотиков

Сальварсан – 1907 год


Пауль Эрлих немецкий врач, бактериолог, основоположник химиотерапии, Нобелевский лауреат (1854 — 1915гг)

Сульфаниламиды – 1935 год



Ге́рхард Йоха́ннес Па́уль До́магк (нем. Gerhard Johannes Paul Domagk; 30 октября 1895 — 24 апреля 1964) — немецкий патолог и бактериолог, лауреат Нобелевской премии

Пенициллин

Александр ФлемингБританский Ученый-бактериолог
Нобелевский Лауреат по Медицине (1945)

Говард Флори патолог и биохимик и **Эрнст Борис Чейн - химик**

Зинаида Виссарионовна Ермольева

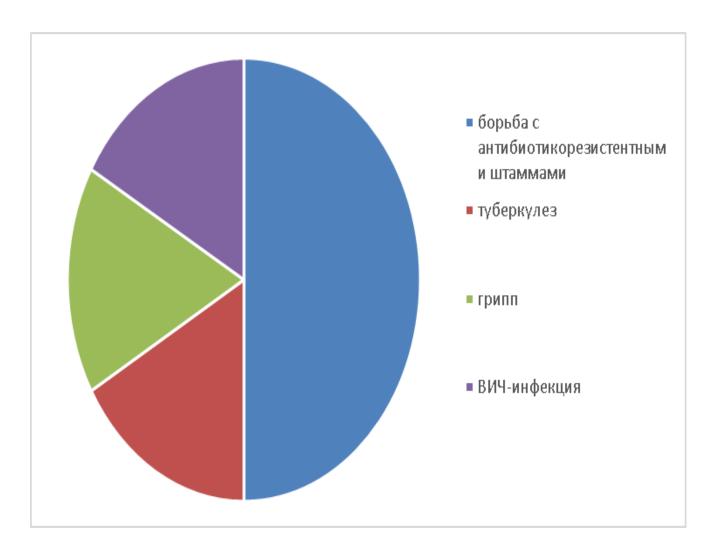
Сульфаниламиды 1936	Аминогликозиды 1946 О	Гликопептиды 1958	И КЛИН Клиндамицин 1968	ИЧЕСКО	ГО ПРИМ	Стрептограмин 1999	Даптомицин 2004	Эравациклин 2018
1930	1940	1950	1960	1970	1980	1990	2000	2010- 2020
	Пенициллин 1941 Тетрациклины 1949	Квиналон Цефалоспорины Стрептомицин 1962			Карбапенемы 1985	Оксазолидинон 2001		Цефтазидин/ авибактам 2015

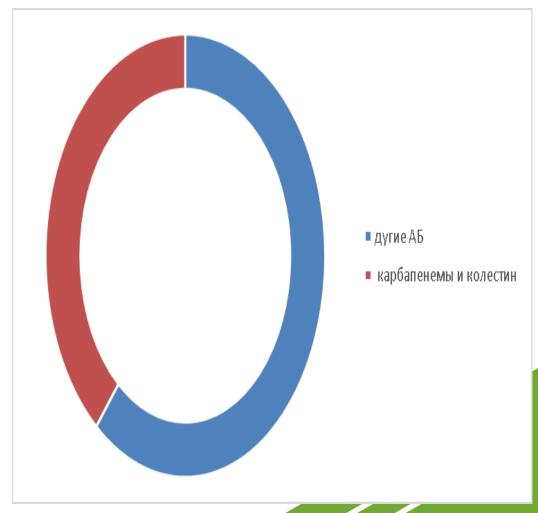
ПЕРВЫЕ СЛУЧАИ ВЫЯВЛЕНИЯ РЕЗИСТЕНТНОСТИ

1940 ГОД

1946 ГОД

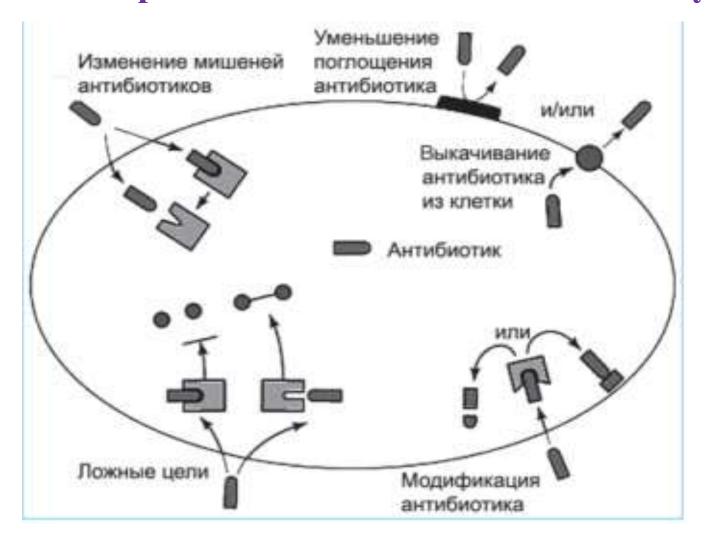
конец 40-х годов


Первые сведения об устойчивости к антибиотикам


14% штаммов стафилококка устойчивых к пенициллину

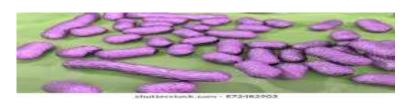
59% штаммов стафилококка устойчивых к пенициллину

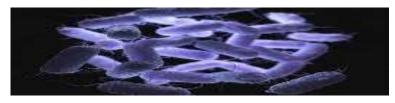
МАСШТАБЫ ПРОБЛЕМЫ АБР



Механизмы резистентности к антибиотикам у бактерий

Механизмы резистентности к антибиотикам у бактерий




Характеристика мобильных генетических элементов бактерий, вовлеченных в распространение генов антибиотикорезистентности

Элемент	Характеристика	Роль в распространении генов резистентности		
Конъюгативные плазмиды	Кольцевые, автономно реплицирующиеся генетические элементы, передающие гены между бактериями благодаря конъюгации	Перенос генов резистентности; мобилизуют перенос других генетических элементов, включающих гены резистентности		
Конъюгативные транспозоны	Интегрирующиеся элементы, которые могут «вырезаться» из хромосомы в виде нерепли- цирующегося кольцевого производного, способного к коньюгации	Такая же		
Мобилизуемые плазмиды	Носители генов, которые могут переноситься между бактериями благодаря коньюгациионному аппарату коньюгативных плазмид	Перенос генов резистентности		
Нерепликативные единицы Bacteroides	Интегрированные в геном бактероидов элементы, которые самостоятельно не способны из него «вырезаться» и переноситься между бактерииями; но эти процессы могут быть инициированы коньюгативными транспозонами	Такая же		
Транспозоны	Могут перемещать фрагмент ДНК из одного участка генома бактерии в другой	Перемещение генов анти- биотикорезистентности от плазмиды к хромосоме и наоборот		
Генные кассеты	Кольцевые нереплицирующиеся ДНК-сегменты, включающие только ORP; интегрируются в интегроны	Включение генов резистентности		
Интегрон	Интегрировавшийся в хромосому бактерии фрагмент ДНК, включающий ген интегразы, промотор и сайт интеграции для генных кассет	Формирование кластеров генов резистентности находящихся под контролем промотора интегрона		
Инсерционные криптические последовательности (ISCR-элементы)	Образование комплексных интегронов первого класса	Мобилизация генов, прилегающих к ISCR- злементу		

КРИТИЧЕСКИЙ УРОВЕНЬ ОПАСНОСТИ (CDC, 2019)

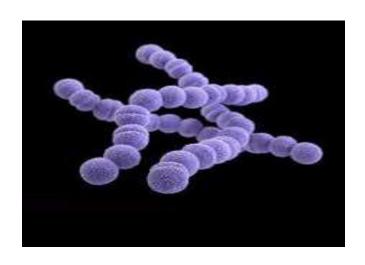
Карбапенем-резистентные Acinetobacter

Карбапенем-резистентные Enterobacteriaceae

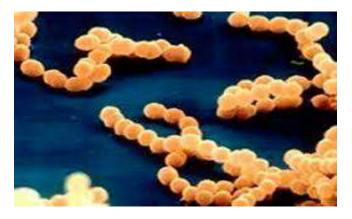
Лекарственно-устойчивые Candida auris

Лекарственно-устойчивые Neisseria gonorrhoeae

Лекарственно-устойчивая Clostridioides difficile



ОПАСНЫЙ УРОВЕНЬ (CDC, 2019)


- Метициллин-резистентный Staphylococcus aureus
- Лекарственно-устойчивые Mycobacterium tuberculosis
- Лекарственно-устойчивые Streptococcus pneumonia
- Лекарственно-устойчивые Shigella
- Лекарственно-устойчивые не тифоидная Salmonella
- Лекарственно-устойчивые Salmonella typhi
- Enterobacteriaceae, продуцирующие БЛРС
- Ванкомицин-резистентные энтерококки
- Мультирезистентные Pseudomonas aeruginosa
- Лекарственно-устойчивые Candida
- Лекарственно-устойчивые Campylobacter

ВОЗМОЖНЫЕ УГРОЗЫ (CDC, 2019)

Эритромицин-резистентные Streptococcus group A

Клиндамицин-резистентные Streptococcus group B

«ESCAPE»-ПАТОГЕНЫ

МИКРООРГАНИЗМ	ОСОБЕННОСТИ ВОЗБУДИТЕЛЯ НА СОВРЕМЕННОМ ЭТАПЕ
Enterococcus faecium (VRE)	Отмечена возрастающая резистентность к ванкомицину
Staphylococcus aureus (MRSA)	Рост резистентности к современным препаратам, высокая токсичность
Klebsiella pneumonia, Escherichia coli	ESBL KL. pneumonia, продуцирующая карбапенемазы, вызывает тяжелые инфекции в отделениях длительного ухода. Новые АМП отсутствуют даже в стадии разработки.
Acinetobacter baumannii	В последние годы вызывает внутрибольничные вспышки. Высокий уровень летальности. Резистентность к карбапенемам.
Pseudomonas aeruginosa	Резистентность к карбапенемам, фторхинолонам, аминогликозидам. Высокая летальность.
Enterobacter spp.	Мультирезистентность, обусловленная выработкой бета-лактомаз расширенного спектра, карбапенемаз, цефалоспориназ.

ПРОФИЛАКТИКА АНТИБИОТИКОРЕЗИСТЕНТНОСТИ

Стратегические задачи, направленные на борьбу с АБР (ВОЗ)

- 1. Повышение информированности населения и понимание проблемы устойчивости к противомикробным препаратам;
- 2. Усиление эпиднадзора и поддержку научных исследований в этой области;
- 3. Сокращение числа случаев заражения инфекциями (прежде всего за счет расширения иммунизационных программ);
- 4. Оптимизация использования антимикробных препаратов, в том числе антибиотиков;
- 5. Обеспечение устойчивых инвестиций на цели противодействия резистентности микробов.

Стратегия предупреждения распространения антимикробной резистентности в Российской Федерации на период до 2030 года

- П. 8. Информирование населения по вопросам применения противомикробных препаратов и проблемам антимикробной резистентности, в том числе путем реализации информационных кампаний по проблемам антимикробной резистентности, а также повышения приверженности к иммунопрофилактике инфекционных болезней в рамках реализации проекта "Укрепление общественного здоровья" национального проекта "Демография«
- П 9. Повышение уровня подготовки специалистов в соответствующих отраслях по вопросам, связанным с антимикробной резистентностью
- П 10. Совершенствование мер по предупреждению и ограничению распространения и циркуляции возбудителей с антимикробной резистентностью
- П 11. Обеспечение системного мониторинга распространения антимикробной резистентности
- П12. Изучение механизмов возникновения антимикробной резистентности и разработка противомикробных препаратов и альтернативных методов, технологий и средств профилактики,

диагностики и лечения инфекционных заболеваний

Повышение информированности населения и понимание проблемы устойчивости к противомикробным препаратам

85% пациентов считают, что их респираторные симптомы вызван бактериальной флорой

87% считают, что при улучшении самочувствия нужно заканчивать антибиотикотерапию

82% считают, что новые и дорогие антибиотики более эффективны, чем старые препараты

Повышение информированности населения и понимание проблемы устойчивости к противомикробным препаратам

63% врачей выбирали антибиотик, который не был рекомендован клиническими рекомендациями

В более чем 70% случаев врачами были выбраны неадекватные дозы антибиотика

Отсутствие актуальной информации

Отсутствие данных эпидемиологического надзора Отсутствие доступа к средствам специфической диагностики

Чрезмерное использование новых препаратов широкого спектра или неправильное назначение старых препаратов

АБП при вирусных инфекциях:

- Не влияют на течение заболевания
- Не сокращают лихорадочного периода
- Не уменьшают риска развития осложнений

Показания к АБ терапии

- проявления септического шока
- тяжелая гипертермия
- значительный нейтрофильный лейкоцитоз
- симптомы системной инфекции у пациента с иммунодефицитом.

АЛГОРИТМ НАЗНАЧЕНИЯ АНТИБАКТЕРИАЛЬНЫХ ПРЕПАРАТОВ

- ОПРЕДЕЛЕНИЕ ЭТИОЛОГИИ ИНФЕКЦИОННО-ВОСПОЛИТЕЛЬНОГО ПРОЦЕССА ПО ПОВОДУ НАЗНАЧЕНИЯ АБП
- СЛЕДУЕТ УЧИТЫВАТЬ СВЕДЕНИЯ ОБ АНТИБИОТИКОРЕЗИСТЕНТНОСТИ В ДАННОМ РЕГИОНЕ
- СОСТОЯНИЕ ПЕРЕЧНЯ АБП, КОТОРЫЕ ЭФКТИВНЫ В ДАННОМ СЛУЧАЕ, ИСХОДЯ ИЗ ВОЗМОЖНЫХ ПАТОГЕНОВ И СПЕКТРА ПРОТИВОМИКРОБНОГО ДЕЙСТВИЯ АНТИБИОТИКОВ

-ВЫБОР АНТИБИОТИКА ИЗ СПИСКА ПОТЕНЦИАЛЬНО ЭФФЕКТИВНЫХ ДЛЯ ДАННОГО СЛУЧАЯ, ИСКЛЮЧИТЬ ПОТЕНЦИАЛЬНО ОПАСНЫЕ ДЛЯ БОЛЬНОГО ПРЕПАРАТЫ

- ИНДИВИДУАЛИЗАЦИЯ АНТИБИОТИКОТЕРАПИИ
- КОМБИНИРОВАННАЯ ИЛИ МОНОТЕРАПИЯ
- СПОСОБ ВВЕДЕНИЯ АНТИБИОТИКОВ
- ИНТЕРВАЛЫ МЕЖДУ ВВЕДЕНИЯМИ
- ПРЕДПОЛОЖИТЕЛЬНАЯ ПРОДОЛЖИТЕЛЬНОСТЬ ТЕРАПИИ
- ВЫБОР КРИТЕРИЕВ ОЦЕНКИ ЭФФЕКТИВНОСТИ И БЕЗОПАСНОСТИ

Разработка новых антибиотиков

Согласно ежегодному анализу ВОЗ в 2021 году в клинической разработке находилось всего 27 новых антибиотиков

Доклиническая фаза

10-15 лет

Клиническая фаза

ЦЕФТАЗИДИМ/АВИБАКТАМ

- Цефалоспорин III поколения, ингибитор ß-лактомаз.
- Зарегистрирован в РФ в 2017г

АКТИВНОСТЬ

- Pseudomonas aeruginosa
- Klebsiella spp.
- Escherichie coli
- Enterobacter spp.

Цефтолозан/тазобактам

- Зарегистрирован в РФ в 2018г.
- Цефалоспорин V поколения

Активность

Pseudomonas aeruginosa

Далбаванцин

- Новый гликопептидный антибиотик
- В РФ зарегистрирован в 2017г.
- Вводится 1 раз в неделю

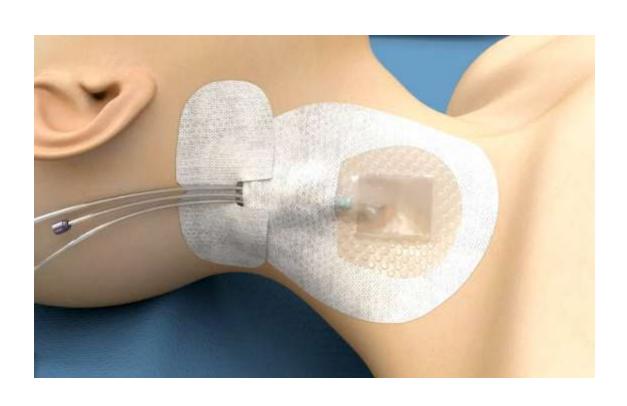
Активность

- Ванкомицин-резистентные штаммы E. faecalis и E. faecium
- Пенициллин-резистентные пневмококки и метициллинрезистентные штаммы S. aureus (MRSA)

Тедизалид

• Зарегистрирован в РФ в 2016г.

Активность


- В отношении широкого спектра «грамм+» бактерий, в том числе MRSA, различных стрептококков и энтерококков (включая VRE)
- Малоэффективен в отношении «грамм-» бактерий

Комбинация с антисептическими адъювантами

- Быстрое наступление клинического выздоровления
- Сокращение применения противомикробной терапии
- Снижение риска случайного возникновения резистентных штаммов

Устойчивость микроорганизмов к а/б не сопровождается резистентностью к большинству антисептиков. Развитие устойчивости микроорганизмов к антисептикам менее вероятна, так как высокие концентрации антисептиков, используемых местно оказывают бактерицидное действие.

Комбинация с антисептическими адъювантами

Тауролидин

Импрегнация катетеров хлоргексидином+сульфодиазин серебра

МЕСТНОЕ ЛЕЧЕНИЕ РАНЕВОЙ ИНФЕКЦИИ

	І ФАЗА	II ФАЗА	III ФАЗА
АНТИСЕПТИКИ	«Черная» и «желтая» фазы по BYRP	Для обработки кожи вокруг раны, профилактика вторичного инфицирования, для промывания полостей	Применение должно быть строго ограничено
АНТИБИОТИКИ	«желтая» фаза, при селективном действии на конкретного возбудителя	Могут применяться при условии их гидрофильности	Применение по исключительным показаниям при высоком риске реинфицирования

В (черный) — некроз

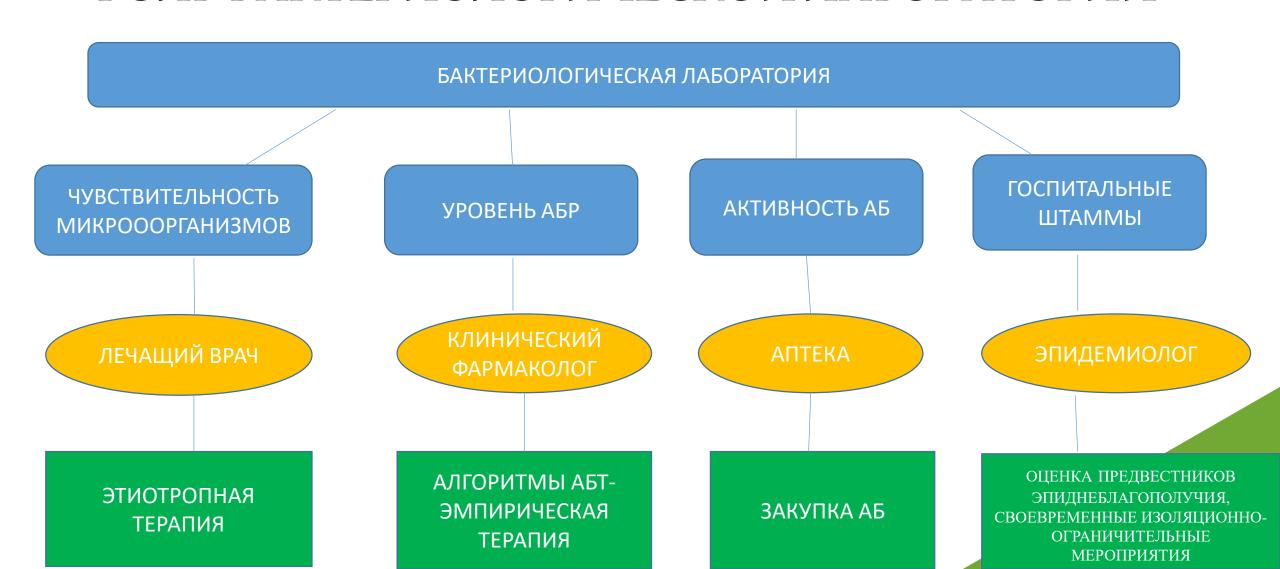
Y (желтый) — фибрин в ране

R (красный) —грануляционная

ткань

Р (розовый)- эпителизация
раны

Привольнев В.В.1, Зубарева Н.А.2, Каракулина Е.В.З Местное лечение раневой инфекции: антисептики или антибиотики?/ КМАХ, т.19, №2, 2017


Клинический фармаколог

Госпитальный эпидемиолог

РОЛЬ БАКТЕРИОЛОГИЧЕСКОЙ ЛАБОРАТОРИИ



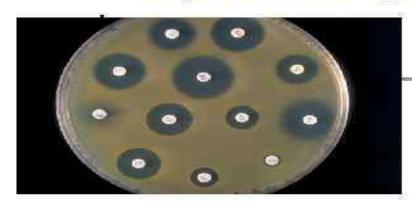
Стратегии по контролю за использованием АМП

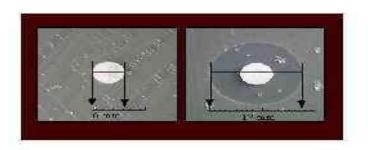
1. Проспективный аудит с интервенционной составляющей и «обратной» фазой

2. Формулярные ограничения

ОЦЕНКА ЧУВСТВИТЕЛЬНОСТИ К АНТИБАКТЕРИАЛЬНЫМ ПРЕПАРАТАМ

диффузионные методы:


- с использованием дисков с антибиотиками
- с помощью Е-тестов

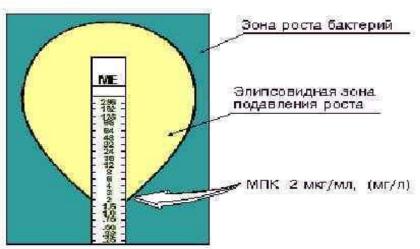

методы разведения:

- разведение в жидкой питательной среде (бульоне)
- разведение в агаре
 - Федеральные клинические рекомендации «Принципы организации мониторирования устойчивости и ведущих возбудителей инфекций, связанных с оказанием медицинской помощи, к антимикробным препаратам в лечебно-профилактических медицинских организациях здравоохранения» (2014г.).

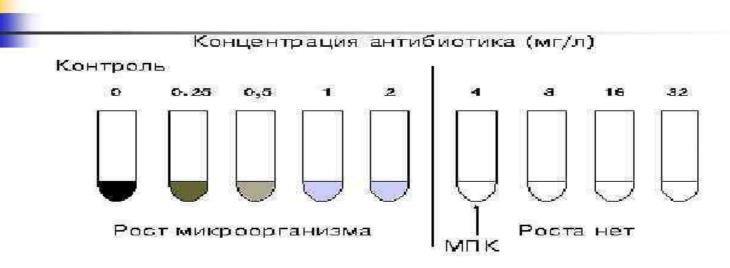
Принцип диско-диффузионного метода определения чувствительности к антибиотикам

Бактериальную культуру засевают газоном на питательный агар в чашке Петри, после чего на его поверхность пинцетом помещают на равномерном расстоянии друг от друга бумажные диски, содержащие определенные дозы разных антибиотиков. Чашки инкубируют при 37 ° С в течение суток. Диффузия антибиотика в агар приводит к формированию зоны подавления роста микроорганизмов вокруг дисков.

По диаметру зон задержки роста культуры судят о ее чувствительности-устойчивости к соответствующим антибиотикам.



Определение чувствительности микроорганизмов с помощью E-тестов


Аналогично тестированию диско-диффузионным методом. Отличие - вместо диска с антибиотиком используют полоску Е-теста, содержащую градиент концентраций антибиотика от максимальной к минимальной. В месте пересечения эллипсовидной зоны подавления роста с полоской Е-теста получают значение минимальной подавляющей концентрации (МПК).

Определение чувствительности к антибиотикам методом серийных разведений.

Первую наименьшую концентрацию антибиотика (из серии последовательных разведений), где визуально не определяется бактериальный рост принято считать минимальной подавляющей концентрацией (МПК) или минимальной ингибирующей концентрацией (МИК)

Усиление эпидемиологического надзора и поддержку научных исследований в этой области

НАЦИОНАЛЬНЫЕ И МЕЖДУНАРОДНЫЕ ПРОГРАММЫ МОНИТОРИНГА АНТИБИОТИКОРЕЗИСТЕНТНОСТИ

- МАРАФОН инфекции у госпитализированных пациентов в многопрофильных стационарах
- ПЕГАС-1,2,3,4,5, 2018,2019,2020 мониторинг антибиотикорезистентности ведущих возбудителей внебольничных инфекций
- **CAESAR** программа эпиднадзора за резистентностью к антибактериальным препаратам в странах Центральной Азии и Восточной Европы
- GLASS- глобальная система эпидемиологического наблюдения за антибиотикорезистентностью, разработана ВОЗ в 2015г

КАЗАНСКИЙ ГОСУДАРСТВЕННЫЙ

МЕДИЦИНСКИЙ УНИВЕРСИТЕТ

▶ Начать работу

Экспертный доступ

? Пройдите опрос

English version

АМЯ трана – это онлайн-платформа анализа данных резистентности к антимикробным препаратам в России, которая содержит набор инструментов для визуализации данных о чувствительности микроорганизмов к антимикробным препаратам и распространенности основных генетических детерминант устойчивости к антибиотикам.

Для цитирования:

- Кусьменков А.Ю., Виноградова А.Г., Трушин И.В., Эйдельштейн М.В., Авраменко А.А., Деинич А.В., Козлов Р.С. АМРтар система мониторинга антибиотикорезистентности в России. Клиническая микробиология и антимикробная кимиотералия. — 2021. — Т.23, №2. — С. 198-204. DOI: 10.96488/cmac.2021.2.198-204
- Виноградова А.Г., Кузьменков А.Ю. Практическое применение АМР/пар. влементы подхода «от общего к частному» на примере Riebsiella prieumoniae. // Клиническая микробирлогия и антимикробная химиртератия. — 2019. — Т.21, №2. — С. 181–186. DOI: 10.36488/cmac.2019.2.181-186.

База данных АМР/мар регулярно пополняется и обновляется в рамках проспективных многоцентовых эпидемиологических исследований антибистикорезистентности, проводимых НИИ антимикробной химнотерапии (НИНАХ) и Межрегиональной ассоциацией по кличической микробиологии и антимикробной хими

Программа фундаментальных научных исследований в Российской Федерации на долгосрочный период (2021 - 2030 годы)

- 3.2.4.7. Разработка нового поколения противовирусных, антибактериальных, противопаразитарных и противогрибковых лекарственных препаратов, в том числе биологически активных веществ (БАВ), для преодоления устойчивости к химиотерапевтическим препаратам
- 3.4.3.3. Изучение генетических характеристик бактериофагов и специфичность их действия
- 3.4.3.4. Выявление генетических механизмов формирования и распространения линий множественно устойчивых и вирулентных бактерий
- 3.4.3.5. Изучение симбиотических микробиоценозов пищеварительного тракта и роли микробиоты кишечника человека в норме и патологии
- 3.4.3.6. Оценка разнообразия молекулярных типов возбудителя сифилиса в Российской Федерации

Программа фундаментальных научных исследований в Российской Федерации на долгосрочный период (2021 - 2030 годы)

- 3.4.3.7. Молекулярные механизмы толерантности, персистентности и резистентности бактерий к противоинфекционным препаратам
- 3.4.3.8. Разработка научных основ применения информационных технологий в медицине
- 3.4.3.9. Изучение молекулярных механизмов резистентности микроорганизмов к лекарственным соединениям, создание новых способов биологической защиты на основе вакцин и химических препаратов, а также новых методов диагностики
- 3.4.3.10. Изучение кишечной микробиоты пациентов с заболеваниями толстой кишки для преодоления распространения резистентных к антибактериальным препаратам штаммов микроорганизмов
- 3.4.5.6. Изучение эпидемиологических, социальных и клинических факторов, определяющих риски неблагоприятных исходов антибиотикотерапии пациентов с инфекциями, связанными с оказанием медицинской помощи

МИКРОБИОЛОГИЧЕСКИЙ МОНИТОРИНГ

НЕОБХОДИМОСТЬ МИКРОБИОЛОГИЧЕСКОГО МОНИТОРИНГА

- На организменном уровне:
- Этиологическая расшифровка ИСМП, оценка антибиотикорезистентности и принятие управленческого решения по лечению.
- На популяционном уровне:
- -Для оценки колонизации пациентов;
- -Для оценки уровня контаминации внешней среды;
- -Для изучения свойств циркулирующих в МО микроорганизмов (степень вирулентности, антибиотикорезистентность, устойчивость к антисептикам и дезинфицирующим средствам)

СВОЙСТВА ВБ ШТАММА СТРУКТУРНОГО ПОДРАЗДЕЛЕНИЯ МО

- Относится к представителям микрофлоры с выраженными природными или приобретенными патогенными свойствами;
- Колонизировать не менее 30% пациентов отделения;
- Проявлять устойчивость к рабочему раствору дезинфицирующих средств, используемых в отделении.

Фельдблюм И.В. Свидетельство ФГУП «Всероссийский научно-технический информационный центр»

Задачи по совершенствованию микробиологического мониторинга

- Стандартизация методов отбора проб (локусы, объем, объекты, кто забирает, когда);
- Стандартизация методов лабораторной диагностики;
- Стандартизация определения госпитальных штаммов;
- Определение маркеров вирулентности различных микроорганизмов с расшифровкой генома циркулирующих возбудителей;
- Включение методов микробиологической диагностики в стандарт оказания медицинской помощи;
- Аппаратно-программное обеспечение.

