Дезинфекция, предстерилизационная очистка и стерилизация изделий медицинского назначения. Современные требования. 2 часть

Предстерилизационная очистка. Стерилизация изделий медицинского назначения. Часть II.

- Требования к качеству предстерилизационной подготовки ИМН.
- Классификация методов стерилизации ИМН: физические, химические; высокотемпературные и низкотемпературные.
- Преимущества и недостатки различных методов.
- Методы контроля.

Предстерилизационная очистка.

Предстерилизационную очистку ИМН осуществляют после их дезинфекции и последующего отмывания остатков дезинфицирующих средств проточной питьевой водой.

Очистка инструментов

- Очистка наиболее важный этап в процессе приготовления инструмента для последующего использования.
- Органические вещества в форме крови, гноя, сыворотки или фекалий служат препятствием для антимикробной активности химических гермицидов и процесса стерилизации.
- Инструменты должны быть очищены, ополоснуты и тщательно высушены перед процессом дезинфекции и стерилизации.

Этапы процесса предстерилизационной очистки инструментов

Проводят ручным или механизированным способом. При ручной очистке процесс включает ряд операций:

- **замачивание** в моющем растворе при полном погружении, заполняя каналы и полости (время выдержки в МУ по применению средств);
- мойка каждого изделия в том же растворе, в котором проводилось замачивание, при помощи ерша, ватномарлевого тампона или тканевой салфетки;
- ополаскивание проточной питьевой водой;
- ополаскивание дистиллированной водой;
- **сушка** горячим воздухом при температуре 85 град. С до полного исчезновения влаги.

При использовании дезсредств, позволяющих совмещать дезинфекцию и ПСО в одном процессе, экономятся время и средства.

Общие требования к средствам для предстерилизационной очистки и стерилизации изделий медицинского назначения.

- ВЫСОКАЯ АКТИВНОСТЬ (СПЕЦИФИЧЕСКОЕ ДЕЙСТВИЕ ЗА ВОЗМОЖНО КОРОТКОЕ ВРЕМЯ)
- БЕЗОПАСНОСТЬ ДЛЯ ПЕРСОНАЛА, ПАЦИЕНТОВ, ОКРУЖАЮЩЕЙ СРЕДЫ
- СОВМЕСТИМОСТЬ С МАТЕРИАЛАМИ ПРИ ОБРАБОТКЕ ИЗДЕЛИЙ СРЕДСТВОМ В РЕКОМЕНДОВАННОМ РЕЖИМЕ
- ЛЕГКОСТЬ И БЫСТРОТА УДАЛЕНИЯ С ИЗДЕЛИЙ ОСТАТКОВ СРЕДСТВ ДО БЕЗОПАСНОГО ДЛЯ ПАЦИЕНТОВ УРОВНЯ (для химических средств)
- СТАБИЛЬНОСТЬ (для химических средств)
- ХОРОШАЯ РАСТВОРИМОСТЬ В ВОДЕ (для химических средств)
- ОТСУТСТВИЕ СИЛЬНОГО И РАЗДРАЖАЮЩЕГО ЗАПАХА (для химических средств)
- ВОЗМОЖНОСТЬ КОНТРОЛЯ ПРОЦЕССА ОБРАБОТКИ
- ПРОСТОТА ПРИМЕНЕНИЯ
- ПРИЕМЛЕМАЯ СТОИМОСТЬ

Вещества, использующиеся для очистки ИМН

- Кислотные (низкий рН)
- Щелочные (высокий рН)
- Нейтральные (рН ~ 7)
- Ферментные

рН шкала и очистка

Рекомендуется для неорганических загрязнениям

Рекомендуется

для инструментов из нержавеющей стали

Рекомендуется для органических загрязнений

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Кислотные

Нейтральные

Щелочные

"Кислые" средства для очистки

- Обычно используются с холодной водой.
- Обычно основа фосфорная кислота
- Используется для удаления остатков мочи, щелочи.
- Обычно обладают коррозирующим эффектом и, по возможности, не должны использоваться для коррозионно нестойких материалов.

"Щелочные" средства для очистки

- Превосходно удаляют органические загрязнения
- Повреждают защитный хромоксидный слой на поверхности инструментов из стали
- Применение таких средств не рекомендуется для деликатных инструментов.

рН нейтральные очищающие агенты

• Менее эффективны в удалении органических веществ

• Безопасны для использования с металлами

• Могут быть неэффективны в удалении засохшей крови или гноя.

Пути развития в области предстерилизационной очистки.

- РАСШИРЕНИЕ НОМЕНКЛАТУРЫ СРЕДСТВ НА ОСНОВЕ РАЗЛИЧНЫХ ДЕЙСТВУЮЩИХ ВЕЩЕСТВ:
 - ПОЗВОЛЯЮЩИХ ПРОВОДИТЬ ЩАДЯЩУЮ ОЧИСТКУ ИЗДЕЛИЙ ИЗ РАЗЛИЧНЫХ МАТЕРИАЛОВ
 - -ОБЕСПЕЧИВАЮЩИХ МОЮЩИЙ ЭФФЕКТ ПРИ КОМНАТНОЙ ТЕМПЕРАТУРЕ
 - -ПРИГОДНЫХ ДЛЯ СОВМЕЩЕНИЯ ПРЕДСТЕРИЛИЗАЦИОН-НОЙ ОЧИСТКИ С ДЕЗИНФЕКЦИЕЙ ИЗДЕЛИЙ
- РАЗРАБОТКА СОВРЕМЕННОГО ОБОРУДОВАНИЯ ДЛЯ ОСУЩЕСТВЛЕНИЯ ПРЕДСТЕРИЛИЗАЦИОННОЙ ОЧИСТКИ МЕХАНИЗИРОВАННЫМ СПОСОБОМ (В Т. Ч. С ПРИМЕНЕНИЕМ УЛЬТРАЗВУКА)

Механизированная очистка. Технические характеристики отечественных ультразвуковых установок.

	Значение параметра для установки					
Параметр	КРИСТАЛЛ-2,5 КРИСТАЛЛ-5 КРИСТАЛЛ-15	УЗВ-1/100; 6/200; 10/150; 18/200- -ТН -РЭЛТЕК	УЗО 1-01- МЕДЭЛ УЗО 5-01-МЕДЭЛ УЗО 10-01- МЕДЭЛ	УЗУМИ -15	УВ-1 «УЛЬТРА- ЭСТ»; УВ-2 «УЛЬТРА- ЭСТ-М»	
Рабочая частота ультразвуковых колебаний, кГц	44	22	33	33	61; 44	
Число УЗ- преобразова- телей	2; 4; 8	1; 2; 4; 4	1	6	1	
Объем рабочей ванны, л	2,5; 5; 15	1; 6; 10; 18	1 или 3; 5; 10	15	0,05; 0,5	

Ферментсодержащие средства для очистки изделий медицинского назначения.

		КОНЦЕН-ТРАЦИИ РАСТВО-РОВ (ПО ПРЕПА-РАТУ), %	ВРЕМЯ ОБРАБОТКИ РАСТВОРОМ, мин	
СРЕДСТВО	ПРОИЗВОДИТЕЛЬ	1-/-	РУЧНОЙ СПОСОБ	С УЛЬТРА-ЗВУКОМ
ЭВЕРЛЮКС 63	ЗАО «ПЕТРОСПИРТ» <i>(РОССИЯ)</i>	0,1; 0,2; 0,3	10; 15	5; 10; 15
КЛИНДЕЗИН- ЭНЗИМ	ООО НПФ «ЭКОТЕХ» <i>(РОССИЯ)</i>	0,3; 0,4; 0,5; 0,8	10; 15	5; 7; 10; 15; 20
АНИОЗИМ	ЛАБОАТОРИЯ «АНИОС» (ФРАНЦИЯ)	0,4; 0,5	10; 15	5; 10
САЙДЕЗИМ	«ЭДВАНСД СТЕРИЛИЗЕЙШН ПРОДАКТС» (США)	0,8; 1,6	15	5; 10; 15

Контроль качества предстерилизационной очистки.

- Проверка качества предстерилизационной обработки инструментов проводится путем постановки проб на наличие остатков крови, полноту отмыва изделий от щелочных компонентов СМС(если рН раствора больше 8) и для определения жировых загрязнений.
- Самоконтроль в ЛПУ проводят: в ЦСО 1% от каждого наименования изделий, обработанных за смену, в отделениях 1 раз в неделю. Контролю подлежит 1% каждого вида изделий, обработанных за сутки, но не менее 3 единиц.
- Организует и контролирует контроль старшая медсестра.

Контроль качества предстерилизационной очистки.

Азопирамовая проба.

Азопирам:

- выявляет наличие следов крови, пероксидаз растительного происхождения, хлорсодержащих препаратов, стирального порошка с отбеливателем и ржавчины (окислов и солей железа).
- содержит 10% амидопирин; 0,1-0,15% солянокислый анилин и 95% этиловый спирт.
- хранится в плотно закрытом флаконе при т-ре +4град.С в холодильнике 2 месяца; в темноте при комнатной температуре (10-23*C) не более 1-го месяца.
- Перед постановкой пробы смешивают равные по объему количество азопирам, 3% перекиси водорода и работают этим реактивом в течение 1-2 часов.
- Проба с азопирамом в 10 раз превышает амидопириновую.

Контроль качества предстерилизационной очистки.

- Амидопириновая проба. Рабочий раствор для постановки амидопириновой пробы состоит из равных количеств 5% спиртового р-ра амидопирина, 30% р-ра уксусной кислоты и 3% р-ра перекиси водорода. Этой пробой определяют качество отмывки инструментов от остатков крови.
- Фенолфталеиновая проба. Данной пробой определяют наличие остаточных количеств щелочных компонентов моющих средств. Для реакции используют 1% раствор фенолфталеина.
- Проба с суданом -3. Пробу с суданом -3 используют для определения жировых загрязнений. Рабочий раствор для постановки пробы может храниться 6 месяцев в холодильнике в плотно закрытом флаконе.

Стерилизация ИМН.

Часть III

Стерилизацию ИМН проводят с целью умерщвления на них всех патогенных и непатогенных микроорганизмов, в т.ч. их споровых форм.

Стерилизацию осуществляют физическими (паровой, воздушный), радиационными (гамма-излучение) и химическими методами (применение растворов химических средств, газовый)

Техническое определение процесса стерилизации

Стерилизация - тщательно разработанный и контролируемый процесс, обеспечивающий шанс вероятность изделия быть загрязненным - один на миллион (10-6)

Стерильность

Остаточное количество микроорганизмов после каждого этапа обработки

- 10 -4 Высокий уровень дезинфекции
 - 1 жизнеспособный организм из 10.000 организмов, подвергшихся обработки
- 10⁻⁶ "Стерилизация" (по определению FDA GHP)
 - 1 жизнеспособный организм из 1.000.000
- 10 -12 Цикл «Супер-убийца»
 - 1 жизнеспособный организм из 1.000.000.000
 - Обязателен для производителей медицинской техники

Andersen Prodacts, Inc.

СПЕЦИАЛЬНЫЕ ТРЕБОВАНИЯ К СРЕДСТВАМ СТЕРИЛИЗАЦИИ

<u>Средства для стерилизации должны</u> <u>иметь:</u>

- микробоцидное действие широкого спектра, в том числе обязательно в отношении устойчивых споровых форм бактерий;
- хорошую проникающую способность агента, в том числе через стерилизационные упаковочные материалы.

Методы стерилизации.

МЕТОД	СТЕРИЛИЗУЮЩИЙ АГЕНТ		
ПАРОВОЙ	ВОДЯНОЙ НАСЫЩЕННЫЙ ПАР ПОД ИЗБЫТОЧНЫМ ДАВЛЕНИЕМ		
воздушный	СУХОЙ ГОРЯЧИЙ ВОЗДУХ		
ГЛАСПЕРЛЕНОВЫЙ	СРЕДА НАГРЕТЫХ СТЕКЛЯННЫХ ШАРИКОВ		
ГАЗОВЫЙ	окись этилена		
	ФОРМАЛЬДЕГИД		
	ОЗОН		
ПЛАЗМЕННЫЙ	НИЗКОТЕМПЕРАТУРНАЯ ПЛАЗМА ПЕРОКСИДА ВОДОРОДА		
ИНФРАКРАСНЫЙ	ик-излучение		
жидкостный	РАСТВОРЫ ХИМИЧЕСКИХ СРЕДСТВ		

Методы стерилизации

Сухой жар

Газ

Пар

Радиация

Жидкости

Низкотемпературная стерилизация

Методы стерилизации в ЛПУ*

- Физические:
 - Термические:
 - Пар (автокалавы)
 - Воздушный (воздушные стерилизаторы)
- Химические:
 - Замачивание:
 - Н2О2 6%, Сайдекс 2%, глютаровый альдегид 2,5%, НУ-Сайдекс
- Газовые:
 - Этиленоксид
 - Формальдегид
 - Озон
- « комбинированные»:
 - плазма пероксида водорода

* - Источник: Корнев И. И.

Общие требования к стерилизации.

- ОБЕСПЕЧЕНИЕ ЭФФЕКТИВНЫХ РЕЖИМОВ РАБОТЫ (наличие функциональных систем, обеспечивающих достижение и поддержание заданных значений параметров режима в загруженной рабочей камере annapama)
- АВТОМАТИЧЕСКИЙ СПОСОБ УПРАВЛЕНИЯ
- НАЛИЧИЕ СВЕТОВОЙ И ЦИФРОВОЙ ИНДИКАЦИИ ПРОЦЕССА
- НАЛИЧИЕ ЗВУКОВОЙ СИГНАЛИЗАЦИИ
- НАЛИЧИЕ СИСТЕМ БЛОКИРОВОК ПРОЦЕССА:
 - при несоответствии достигнутых значений параметров регламентированным значениям параметров режима
 - при вмешательства персонала в ход стерилизационного цикла
- ВОЗМОЖНОСТЬ РАСПЕЧАТКИ ИНФОРМАЦИИ О СОВЕРШЁННОМ ЦИКЛЕ

Специальные требования к процессу стерилизации.

ПАРОВОЙ МЕТОД

- **ВОЗМОЖНОСТЬ ПОДСУШИВАНИЯ ИЗДЕЛИЙ В СТЕРИЛИЗАЦИОННОЙ КАМЕРЕ**

ВОЗДУШНЫЙ МЕТОД

- ВОЗМОЖНОСТЬ ЦИРКУЛЯЦИИ ВОЗДУХА ВО ВРЕМЯ ЦИКЛА СТЕРИЛИЗАЦИИ
- **ВОЗМОЖНОСТЬ ПРИНУДИТЕЛЬНОГО ОХЛАЖДЕНИЯ** ПРОСТЕРИЛИЗОВАННЫХ ИЗДЕЛИЙ

ГАЗОВЫЙ МЕТОД

ОБЯЗАТЕЛЬНАЯ ДЕГАЗАЦИЯ ПРОСТЕРИЛИЗОВАННЫХ ИЗДЕЛИЙ

ЗАМАЧИВАНИЕ В ЖИДКОСТЯХ

- НАЛИЧИЕ СПЕЦИАЛЬНЫХ СТЕРИЛЬНЫХ ЕМКОСТЕЙ
- ОТМЫВ ИЗДЕЛИЙ ОТ ОСТАТКОВ СРЕДСТВА СТЕРИЛЬНОЙ ВОДОЙ

История стерилизации

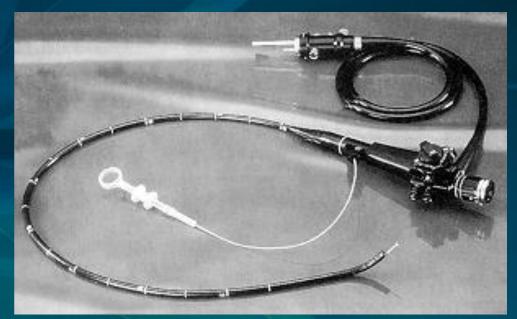
Методы стерилизации

- Сухой горячий воздух (прокаливание) Пар – 1897г
- Этилен оксид 1940-ые
- Формальдегид 1960-ые
- Пар формальдегида
- Надуксусные системы 1989

Новые технологии

- Плазма пероксида водорода
- Озон

Факторы, ведущие к инновациям


До 1960-х

Факторы, ведущие к инновациям

После 1960 годов

- Новые технологии
 - -Кардиология
 - -Эндоскопия и др.

Потребности ЛПУ

- Увеличение объема высокотехнологичных процедур
- Быстрый оборот инструментов
- Решение проблемы стерилизации высокотехнологичного инструментария
- Быстрая и качественная обработка инструментов
- Продление срока службы дорогостоящего
- инструмента
- Снижение затрат, в т.ч. на ремонт и закупку инструментов
- Снижение риска возникновения ВБИ
- Соответствие нормативно-правовым актам, требованиям контролирующих органов
- Безопасность, улучшение условий труда персонала

ОБЩИЕ ТРЕБОВАНИЯ К СТЕРИЛИЗАТОРАМ

- ОБЕСПЕЧЕНИЕ ЭФФЕКТИВНЫХ РЕЖИМОВ РАБОТЫ (наличие функциональных систем, обеспечивающих достижение и поддержание заданных значений параметров режима в загруженной рабочей камере аппарата)
- АВТОМАТИЧЕСКИЙ СПОСОБ УПРАВЛЕНИЯ
- НАЛИЧИЕ СВЕТОВОЙ И ЦИФРОВОЙ ИНДИКАЦИИ ПРОЦЕССА
- НАЛИЧИЕ ЗВУКОВОЙ СИГНАЛИЗАЦИИ
- НАЛИЧИЕ СИСТЕМ БЛОКИРОВОК ПРОЦЕССА:
 - при несоответствии достигнутых значений параметров регламентированным значениям параметров режима
 - при вмешательства персонала в ход стерилизационного цикла
- ВОЗМОЖНОСТЬ РАСПЕЧАТКИ ИНФОРМАЦИИ О СОВЕРШЁННОМ ЦИКЛЕ

СПЕЦИАЛЬНЫЕ ТРЕБОВАНИЯ К СТЕРИЛИЗАТОРАМ

К ПАРОВЫМ

- ВОЗМОЖНОСТЬ ПОДСУШИВАНИЯ ИЗДЕЛИЙ В СТЕРИЛИЗАЦИОННОЙ КАМЕРЕ

К ВОЗДУШНЫМ

- **ВОЗМОЖНОСТЬ ЦИРКУЛЯЦИИ ВОЗДУХА ВО ВРЕМЯ ЦИКЛА** СТЕРИЛИЗАЦИИ
- ВОЗМОЖНОСТЬ ПРИНУДИТЕЛЬНОГО ОХЛАЖДЕНИЯ ПРОСТЕРИЛИЗОВАННЫХ ИЗДЕЛИЙ

К ГАЗОВЫМ

ВОЗМОЖНОСТЬ ДЕГАЗАЦИИ ПРОСТЕРИЛИЗОВАННЫХ ИЗДЕЛИЙ

К ЖИДКОСТНЫМ

- ВОЗМОЖНОСТЬ СТЕРИЛИЗАЦИИ ЕМКОСТИ
- ВОЗМОЖНОСТЬ ОТМЫВА ИЗДЕЛИЙ ОТ ОСТАТКОВ СРЕДСТВА СТЕРИЛЬНОЙ ВОДОЙ

ПУТИ РАЗВИТИЯ СТЕРИЛИЗАЦИОННОГО ОБОРУДОВАНИЯ

РАЗРАБОТКА НОВОГО ОБОРУДОВАНИЯ ПОЗВОЛЯЮЩЕГО РЕАЛИЗОВАТЬ:

- ПРИНЦИПИАЛЬНО НОВЫЕ МЕТОДЫ
- МЕНЕЕ ПРОДОЛЖИТЕЛЬНЫЕ РЕЖИМЫ
- БОЛЕЕ ЩАДЯЩИЕ РЕЖИМЫ

ПРЕДНАЗНАЧЕННОГО ДЛЯ ОСУЩЕСТВЛЕНИЯ НОВЫХ ПРОЦЕССОВ ИЛИ ДЛЯ ОБРАБОТКИ КОНКРЕТНЫХ ИЗДЕЛИЙ

ОСНАЩЕННОГО СОВРЕМЕННЫМИ СИСТЕМАМИ КОНТРОЛЯ

СОВЕРШЕНСТВО-ВАНИЕ СУЩЕСТВУЮЩЕГО ОБОРУДОВАНИЯ ИЗМЕНЕНИЕ ВОЗМОЖНОСТЕЙ ОБОРУДОВАНИЯ ПРИ ДОРАБОТКЕ В СВЯЗИ С ПОЛУЧЕНИЕМ НОВЫХ НАУЧНЫХ ДАННЫХ И ВВЕДЕНИЕМ НОВЫХ СТАНДАРТОВ

ОСНАЩЕНИЯ БОЛЕЕ СОВРЕМЕННЫМИ КОМПЛЕКТУЮЩИМИ (В СВЯЗИ С ИЗМЕНЯЮЩИМИСЯ ВОЗМОЖНОСТЯМИ В

СЛЕДСТВИЕ НАУЧНО-ТЕХНИЧЕСКОГО ПРОГРЕССА)

ИДЕАЛЬНЫЙ ПОЛНОЦЕННЫЙ КОМПЛЕКС ПРИНАДЛЕЖНОСТЕЙ ДЛЯ СТЕРИЛИЗАЦИИ КОНКРЕТНЫМ МЕТОДОМ

- СТЕРИЛИЗАТОР
- СТЕРИЛИЗАЦИОННЫЕ УПАКОВОЧНЫЕ МАТЕРИАЛЫ
- БИОЛОГИЧЕСКИЙ ИНДИКАТОР
- ХИМИЧЕСКИЕ ИНДИКАТОРЫ РАЗЛИЧНЫХ КЛАССОВ
- КАРТРИДЖ СО СТЕРИЛИЗУЮЩИМ СРЕДСТВОМ (для химических методов стерилизации)

ОШИБКИ ПРИ ИСПОЛЬЗОВАНИИ СТЕРИЛИЗАЦИОННОГО ОБОРУДОВАНИЯ И ВСПОМОГАТЕЛЬНЫХ МАТЕРИАЛОВ

ИСПОЛЬЗОВАНИЕ ОБОРУ-ДОВАНИЯ И ВСПОМОГА-ТЕЛЬНЫХ МАТЕРИАЛОВ, НЕ ЗАРЕГИСТРИРОВАННЫХ В РОССИИ И НЕ РАЗРЕШЕН-НЫХ К ПРИМЕНЕНИЮ В ЛПУ ДЛЯ ДАННОЙ ЦЕЛИ

- •ЗАВЕДОМО НЕ ЭФФЕКТИВНЫХ И НЕ ПРЕДНАЗНАЧЕННЫХ ДЛЯ КОНКРЕТНОЙ ЦЕЛИ ОБОРУДОВАНИЯ И МАТЕРИАЛОВ (в целом для определенного процесса обработки или для определенных изделий/объектов)
- МОРАЛЬНО УСТАРЕВШИХ (ОТМЕНЕННЫХ) МОДЕЛЕЙ, НЕИСПРАВНЫХ ОБРАЗЦОВ

НАРУШЕНИЕ ИНСТРУКЦИЙ ПО ПРИМЕНЕНИЮ В ЧАСТИ

- РЕЖИМОВ ПРИМЕНЕНИЯ (КОНЦЕНТРА-ЦИЯ, ТЕМПЕРАТУРА, ВРЕМЯ ВОЗДЕЙСТ-ВИЯ, ПРОДОЛЖИТЕЛЬНОСТЬ ОТМЫВА ИЛИ ДЕГАЗАЦИИ)
- ПРАВИЛ РАЗМЕЩЕНИЯ ИЗДЕЛИЙ В ЕМКОСТЯХ, УПАКОВКАХ, РАБОЧИХ КАМЕРАХ
- СРОКОВ ГОДНОСТИ И КРАТНОСТИ ИСПОЛЬЗОВАНИЯ СРЕДСТВ, ИНДИКАТОРОВ, УПАКОВОЧНЫХ МАТЕРИАЛОВ И Т. П.
- ПРАВИЛ ПРИМЕНЕНИЯ В ОБОРУДОВАНИИ ХИМИЧЕСКИХ ДЕЗИНФЕКЦИОННЫХ СРЕДСТВ

УСЛОВИЯ, СОПУТСТВУЮЩИЕ ОРГАНИЗАЦИИ И ОСУЩЕСТВЛЕНИЮ СТЕРИЛИЗАЦИОННЫХ МЕРОПРИЯТИЙ В ЛПУ НА СОВРЕМЕННОМ ЭТАПЕ

- Положительные факторы:
- БУРНЫЙ РОСТ ПРЕДЛАГАЕМЫХ К ПРИМЕНЕНИЮ В ЛПУ РАЗНООБРАЗНЫХ, В ТОМ ЧИСЛЕ АБСОЛЮТНО НОВЫХ, СТЕРИЛИЗАЦИОННЫХ СРЕДСТВ, ОБОРУДОВАНИЯ, МАТЕРИАЛОВ
- ГАРМОНИЗАЦИЯ ОТЕЧЕСТВЕННЫХ И ЗАРУБЕЖНЫХ ПОДХОДОВ В ДАННОЙ ОБЛАСТИ
- ВОЗМОЖНОСТЬ БЫСТРОГО РАСПРОСТРАНЕНИЯ ИНФОРМАЦИИ ЗА СЧЕТ ШИРОКОЙ КОМПЬЮТЕРИЗАЦИИ, ВНЕДРЕНИЯ ИНТЕРНЕТА И ЭЛЕКТРОННОЙ ПОЧТЫ
- Отрицательные факторы:
- КРАЙНЕ СЛАБАЯ ПОДГОТОВКА ВЫПУСКНИКОВ ВЫСШИХ И СРЕДНИХ МЕДИЦИНСКИХ УЧЕБНЫХ ЗАВЕДЕНИЙ ПО ВОПРОСАМ СТЕРИЛИЗАЦИИ
- НЕДОСТАТОЧНОЕ ФИНАНСИРОВАНИЕ ЛПУ

Воздушный метод стерилизации сухим горячим воздухом является самым древним, если к нему отнести прокаливание на костре инструментов для трепанации черепа в Индии более двух тысяч лет назад. Долгое время, почти весь XX век, этот метод стерилизации оставался одним из основных в медицине. Но постепенно он уходит из практического здравоохранения и уступает место паровому методу. В развитых странах Европы и Америки, а также в наших передовых клинических центрах воздушный метод стерилизации ИМН не используется. Воздушная стерилизация в таких клиниках осталась лишь в фармации для стерилизации порошков, талька, масляных препаратов.

Метод воздушной стерилизации (сухим теплом, сухожаровой метод) это самый доступный метод стерилизации изделий медицинского назначения, который в настоящее время остается достаточно актуальным и распространенным. Стерилизующим агентом в данном случае является сухой горячий воздух

• Суховоздушные стерилизаторы, с помощью которых осуществляется суховоздушная, или сухожаровая стерилизация, при этом методе действующим началом является воздух нагретый до 160-200° С.

Сухой жар обладает достаточно эффективным действием не только на вегетативные формы организмов, но и на споры. Факторами, ограничивающими данный метод, являются длительность стерилизации и ограниченность материалов, способных его перенести.

Предметы, подлежащие воздействию сухим жаром, заворачивают в 1-2 слоя пергаментной бумаги, фольги или помещают в специальные коробки. Загрузив материал, включают нагревательный прибор. Когда шкаф прогреется до 85 - 90° С, закрывают дверцы. При 180° С стерилизация продолжается в течение 45 минут. После завершения стерилизации аппарат выключают, но дверцы открывают только после снижения температуры до 85-90° С. Затем стерильные инструменты раскладывают по коробкам и барабанам. Весь процесс, таким образом, занимает не менее 2 часов.

- Для воздушной стерилизации применяются следующие программы:
- - рабочая температура в стерилизационной камере 180С, время стерилизационной выдержки 60 минут;
- - рабочая температура в стерилизационной камере 160С, время стерилизационной выдержки 150 минут.

Шкаф сушильностерилизационный ШСС-80 Санитарно-эпидемиологические правила и нормативы СанПиН 2.1.3.2630-10 «САНИТАРНО-ЭПИДЕМИОЛОГИЧЕСКИЕ ТРЕБОВАНИЯ К ОРГАНИЗАЦИЯМ, ОСУЩЕСТВЛЯЮЩИМ МЕДИЦИНСКУЮ ДЕЯТЕЛЬНОСТЬ»

п.2.18 Использование сушильных шкафов (типа ШСС) для стерилизации воздушным методом запрещается

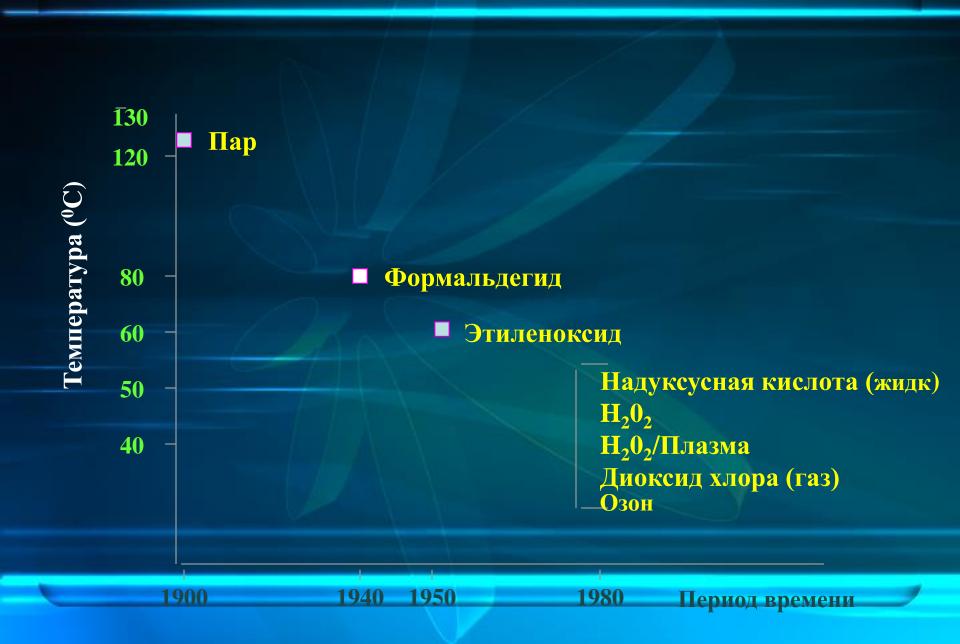
- Стерилизаторы предназначены для стерилизации сухим горячим воздухом хирургического инструмента, термостойких шприцев (с отметкой 200°С) и игл к ним, стеклянной посуды и прочих медицинских изделий.
- Стерилизатор может быть использован для дезинфекции и сушки медицинских изделий.

ГП-80-0х-"ПЗ"

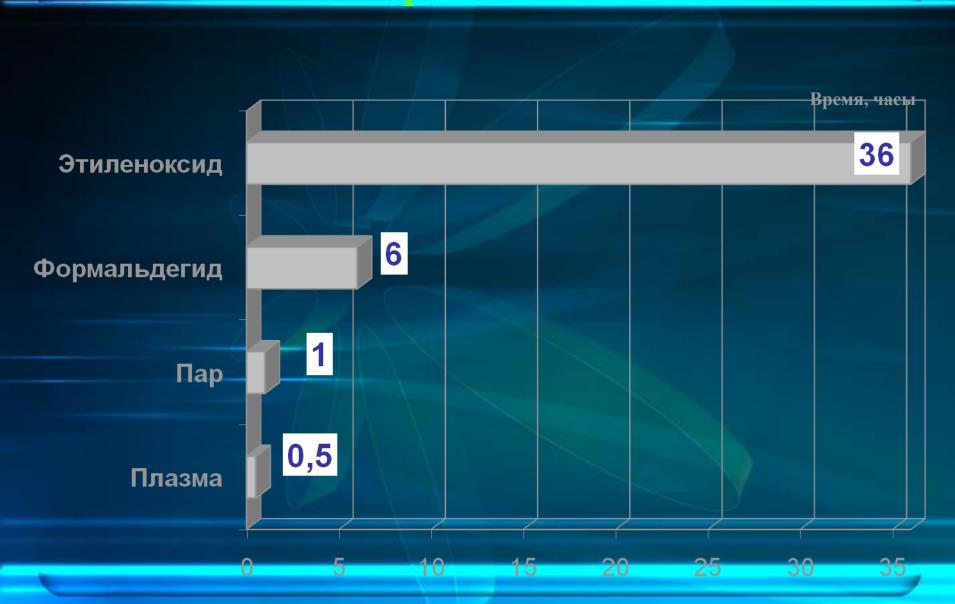
ГП-80 Ох-"ПЗ"

Отличительной особенностью данной серии стерилизаторов является наличие высокоэффективной системы охлаждения, которая сокращает время охлаждения, а следовательно и общее время цикла стерилизации. В стерилизаторах объемом 80 литров система охлаждения работает без подачи холодного воздуха на стерильный метериал внутри камеры.

ГП-40 СПУ (Смоленск)


ГП-40 СПУ с охлаждением: Наличие эффективной системы принудительного охлаждения позволяет отказаться от подачи холодного воздуха к стерилизуемым материалам и применения бактерицидных фильтров, что сокращает время стерилизации почти в два раза.

Метод воздушной стерилизации (сухим теплом, сухожаровой метод) это самый доступный метод стерилизации изделий медицинского назначения, который в настоящее время остается достаточно актуальным и распространенным. Стерилизующим агентом в данном случае является сухой горячий воздух


Методы стерилизации

Изменение температуры стерилизации.

Зависимость времени цикла от метода стерилизации

Стерилизация паром

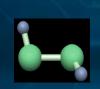
- Старейший и наиболее оптимальный по соотношению «эффект/стоимость» метод стерилизации материалов, устойчивых к нагреванию и воздействию влаги
- Водяной горячий насыщенный пар под избыточным давлением
- Уничтожение микроорганизмов зависит от температуры, давления и времени контакта
- Пар должен контактировать со всеми поверхностями стерилизуемого объекта
- Приемлем для большинства ИМН, не чувствительных к влаге и t°

- Существуют различные способы удаления воздуха из паровой камеры, из которых в современных медицинских стерилизаторах применяются два:
- гравитационный;
- форвакуумный.

Гравитационный

• В российских стерилизаторах в основном применяется гравитационный способ удаления воздуха - это когда через продувочный клапан в нижней части стерилизатора удаляется воздух, более тяжелый по сравнению с паром, который поступает через клапан в верхней части камеры. Пар постепенно заполняет камеру, замещая воздух.

Форвакуумные стерилизаторы


В удаление воздуха осуществляется многократной циклической откачкой воздуха из стерилизационной камеры. В камеру подается насыщенный пар и производится откачка смеси пара и воздуха, такой цикл удаления повторяется многократно от 3 до 9 раз (в зависимости от марки аппарата) до полного удаления воздуха из камеры, пористой загрузки и изделий с пустотами. Откачка паро-воздушной смеси проводят либо форвакуумным насосом, либо инжектором.

Инновации в дезинфектологии.

История.

1880 Первые антисепти ческие хирургиче ские повязки (J&J)

1890 первый промышл енный автоклав (J&J)

1963 1980 J&J Изобрет начинает ение **CIDEX**® разработ (J&J)КИ нового метода

стерилиз ации

1993 1983 Первая 1&1 применяе плазменна т плазму я система -H2O2 для STERRAD® **100S** нового метода стерилиза

ЦИИ

1998 **Prevacar** е гель для рук

1999 2000 STERRA CIDEX® STERRAD D[®] 50 **OPA**

2003 ® 200

STERRAD Новое поколение 100NX

2008

STERRAD NX (J&J)

2004

Старые паровые стерилизаторы

Стерилизация паром

Преимущества

- Подходит для широкого спектра инструментов
- Дешевизна
- Нетоксичность
- Безопасно для окружающей среды
- Быстрота

Минусы паровой стерилизации

- Не подходит для растущего количества деликатных ИМН, чувствительных к влаге и t°
- При многократной обработке риск повреждения деликатных ИМН, преждевременный износ, коррозия, притупление режущей кромки
- Низкое качество водопроводной воды может послужить причиной коррозии или пятен на инструментах
- Инструменты горячие! Риск ожогов.
- По завершении цикла упаковки с ИМН влажные, а ИМН горячие. Нельзя передавать в отделение сразу (охлаждение около 1 часа).
- Искусственное охлаждение оптики после автоклавирования грозит повреждением её линзовых и фиброволоконных систем.

Воздушные стерилизаторы (сухожаровые шкафы)

- Стерилизация сухим горячим воздухом
- Еще более высокие t, чем в автоклавах 160 и 180 °C
- Длиннее цикл 60—65 мин и 150 мин
- В России все еще широко используется
- В развитых странах высокая энергопотребляемость, отсутствие надежных методов упаковки и высокая температура воздействия свели применение данного метода к единичным случаям (ШСС не являются стерилизаторами, из воздушных ГП 40; ГП 80).

Факторы, влияющие на методы стерилизации

- До 1960 года большинство мед.инструментов производились из устойчивых к температуре материалов
- После 1960 года произошло расширение в материалах и технологиях, используемых для производства инструментов
- Новые технологии предлагают чувствительные к влаге и температуре инструменты

Низкотемпературные методы стерилизации

«Холодная» стерилизация:

- Замачивание в жидких стерилизующих средствах
- Газ (ЭО, ФО, озон)
- Плазма H²O²
- Радиационный метод

Радиационный метод

Радиационный метод используется для промышленной стерилизации одноразовых изделий из полимерных материалов, режущих инструментов, шовного и перевязочного материала, некоторых лекарственных препаратов.

В лечебно-профилактических учреждениях радиационная стерилизация не применяется в связи с большой дороговизной установок и по соображениям техники безопасности.

Радиационный метод

- Стерилизующим агентом при радиационной стерилизации является проникающее гамма- или бета-излучение. Наиболее широко используется гамма-излучающий изотоп кобальта-60, реже изотоп цезия-137, в связи с его низким уровнем энергии и излучения. Бета-излучающие изотопы используются крайне редко, так как бета-излучение обладает гораздо меньшей проникающей способностью.
- Эффективность радиационной стерилизации зависит от общей дозы излучения и не зависит от времени. Средняя летальная доза для микроорганизмов всегда одинакова, проводится ли облучение при низкой интенсивности в течение длительного промежутка времени или недолго при высокой интенсивности излучения. Доза 25 кГр (2,5 Мрад) надежно гарантирует уничтожение высокорезистентных споровых форм микроорганизмов.
- Радиационная стерилизация обладает рядом технологических преимуществ: высокая степень инактивации микроорганизмов, возможность стерилизации больших партий материалов, автоматизация процесса, возможность стерилизации материалов в любой герметичной упаковке (кроме радионепрозрачной). Немаловажным обстоятельством является то, что температура стерилизуемых изделий в ходе стерилизации не повышается.

Замачивание в жидких стерилизующих средствах

Санитарно-эпидемиологические правила и нормативы СанПиН 2.1.3.2630-10 «САНИТАРНО-ЭПИДЕМИОЛОГИЧЕСКИЕ ТРЕБОВАНИЯ К ОРГАНИЗАЦИЯМ, ОСУЩЕСТВЛЯЮЩИМ МЕДИЦИНСКУЮ ДЕЯТЕЛЬНОСТЬ»

- 2.19 Химический метод стерилизации с применением растворов химических средств, как правило применяют, для стерилизации изделий, в конструкции которых использованы термолабильные материалы, не позволяющие использовать другие официально рекомендуемые, доступные методы стерилизации.
- Для химической стерилизации применяют растворы альдегидсодержащих, кислородсодержащих и некоторых хлорсодержащих средств, проявляющих спороцидное действие.

4.6. Стерилизация растворами химических средств.

- 4.6.1. Стерилизация изделий растворами химических средств является вспомогательным методом, поскольку изделия нельзя простерилизовать в упаковке, а по окончании стерилизации их необходимо промыть стерильной жидкостью (питьевая вода, 0,9% раствор натрия хлорида), что при нарушении правил асептики может привести к вторичному обсеменению простерилизованных изделий микроорганизмами.
- 4.6.4. Температура растворов, за исключением специальных режимов применения перекиси водорода и средства Лизоформин 3000, должна составлять не менее 20°C для альдегидсодержащих средств и не менее 18°C для остальных средств.

Стерилизация в жидких стерилизующих средствах

- 1. Длительная экспозиция у ряда препаратов; современные средства с коротким временем экспозиции
 - долгий цикл (1 за смену от 6 до 10 часов)
 - негативное воздействие на инструменты риск повреждения
- 2. Обязательно соблюдать время выдержки и концентрацию, своевременно делать новый раствор, 2-х кратно промывать изделие от остатков стерилянта
 - существенный риск человеческого фактора, остатков стериллянта на инструментах
 - необходима тщательная подготовка персонала и контроль всех этапов
- 3. Затруднен контроль эффективности
- 4. Стерилизация неупакованных изделий
 - не обеспечиваются даже минимальные сроки сохранения стерильности
 - высок риск повторной контаминации
 - для хранение необходимы специальные емкости/шкафы
- 5. Риск для здоровья персонала
- 6. Затраты на стерилизующие средства, ручной труд

Химическая стерилизация

- Преимущества:
 - Выручает, если нет альтернативы, НО не дешевый и не простой
- Недостатки:
 - Опасные пары
 - Необходимость герметизации
 - Повреждения, вызванные повышенной влажностью
 - Продолжительность срока службы химического раствора → эффективность раствора
 - Отсутствие индикаторов

НЕОБХОДИМОСТЬ ИСПОЛЬЗОВАНИЯ СТЕРИЛЬНЫХ ЕМКОСТЕЙ ДЛЯ РАЗМЕЩЕНИЯ ИЗДЕЛИЙ В РАСТВОРЕ НА СТАДИЯХ СТЕРИЛИЗАЦИОННОЙ ВЫДЕРЖКИ И ОПОЛАСКИВАНИЯ ИЗДЕЛИЙ ОТ ОСТАТКОВ ХИМИЧЕСКОГО СРЕДСТВА

НЕОБХОДИМОСТЬ НАЛИЧИЯ БОЛЬШИХ КОЛИЧЕСТВ <u>СТЕРИЛЬНОЙ</u>ВОДЫ ДЛЯ ОПОЛАСКИВАНИЯ ИЗДЕЛИЙ ОТ ОСТАТКОВ СРЕДСТВА

ОТСУТСТВИЕ ВОЗМОЖНОСТИ СТЕРИЛИЗОВАТЬ ИЗДЕЛИЯ В УПАКОВАННОМ ВИДЕ

Метод газовой стерилизации

- Для термолабильных медицинских изделий (эндоскопы и принадлежности к ним, диализаторы, катетеры и т.п.) наиболее приемлемым является метод газовой стерилизации.
- Для этого используются химические соединения, обладающие безусловным спороцидным действием: окись этилена, бромистый метил, смесь окиси этилена и бромистого метила (смесь ОБ) и формальдегид.
- Газовая стерилизация метод значительно более сложный, чем традиционные методы стерилизации паром и горячим воздухом. При этом необходимо на строго определенном уровне поддерживать температуру, влажность, концентрацию стерилизующего газа, давление и экспозицию.
- Это возможно только при наличии оборудования с автоматическим прохождением цикла.

Газовая стерилизация

- **■ О**30H
- Этиленоксид
- Формальдегид

Озон

Под воздействием солнечного излучения или электрического разряда может происходить реакция:

 $284Дж+3O_2=2O_3$

В результате образуется озон . Он отличается от обычного кислорода составом молекулы (O_3) и свойствами.

Озон является одним из наиболее сильных окислителей, уничтожающих бактерии, споры и вирусы, является озон. Механизм обеззараживания воды озоном основан на его способности инактивировать сложные органические вещества белковой природы, содержащиеся в животных и растительных организмах.

Озон

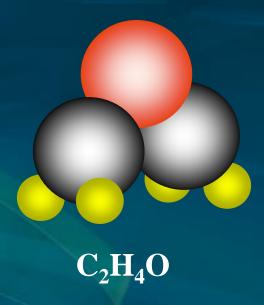
- Является сильноым дезинфицирующим и химически безопасным средством, он используется для предотвращения биологического роста нежелательных организмов в продуктах питания и на технологическом пищевом оборудовании.
- Озон обладает свойством убивать микроорганизмы, не создавая новых вредных химических веществ.
- В процессе озонирования уничтожаются микробы и бактерии, вредные химиче¬ские вещества, вирусы, плесень
- Озон успешно используется в медицине. Озон обладает высокой эффективностью, уничтожая бактерии, грибы и простейших. Озон оказывает быстрое и радикальное воздействие на многие вирусы, при этом (в отличие от многих антисептиков) не проявляет разрушающего и раздражающего действия на ткани, так как клетки многоклеточного организма имеют антиоксидантную систему защиты.
- Озонирование воздуха способствует уничтожению опасных для здоровья химических веществ (формальдегид, фенол, стирол из лаков, красок, мебели, особенно ДСП), табачного дыма, органических веществ (источники насекомые, домашние животные, грызуны), моющих и чистящих средств, продуктов горения и жженых материалов, плесени, грибков и бактерий.
- В качестве сильного окисляющего агента он применяется для стерилизации изделий медицинского назначения.

Озон

- Позиционирование: современный, эффективный, простой в инсталляции, компактный, дешевый (без расходных материалов). стерилизатор с коротким циклом (100 170 мин, без аэрации).
- 3 российских производителя (С-Петербург, Москва).
- 1 класс токсичности (ГОСТ № 12.1.005 188).
- Необходим контроль воздуха рабочих зон.
- Отсутствие вытяжной установки приводят к постоянному превы ПДК озона в помещениях.
- Подключение к источнику медицинского кислорода.
- Большое количество повреждений ИМН (коррозия металлов, резина крошится, мутнеет оптика и проч.). Обработка ИМН простой конфигурации из коррозийно-стойких материалов.
- Стерилизация происходит без упаковки.
- Сомнительная эффективность, нет полноценных методов контроля процесса.
- Метод не прошел испытания в НИИ Дезинфектологии или Эпидемиологии.

Озон

Письмо Онищенко "О совершенствовании мероприятий по обеспечению эпидемиологической безопасности манипуляций гибкими эндоскопами":


- Режимы стерилизации гибких эндоскопов в озоновых стерилизаторах в настоящее время не разработаны
- Нет официальных данных материаловедческих экспертиз о безопасности этого метода для гибких эндоскопов.
- Не допускать использование для стерилизации эндоскопической техники пароформалиновых камер и озоновых стерилизаторов

Этиленоксид

- Давно существует (с начала 50-х)
- Низкая температура (37-55° C)
- Длительный цикл
 - 3 часа при 55°C
 - 5-6 часов при 37°C
- Низкая влажность
 - -30%-60%

Стерилизатор на этилен оксиде 88/12


Стерилизатор на оксиде этилена

- Этилен оксид соединен с переносящим газом, чтобы быть менее взрывоопасным
- В ранних этиленоксидных стерилизаторов использовали хлорофтороуглеводороды (CFC) (вызывают повреждение озонового слоя)
- В новых моделях используют менее вредные гидрохлорофтороуглеводороды (HCFC)

Этиленоксидный стерилизатор

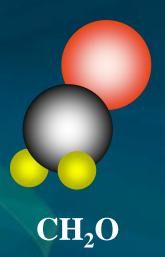
Цикл этиленоксида

Цикл этиленоксида

Доставка газа

- 100% этиленоксид доставляется в картридже
 - Возможность взрыва
- Загрузка картриджа в систему перед каждой загрузкой инструментов
- Система прокалывает картридж автоматически
- Пользователь должен взять и проветрить картридж после каждого цикла

100g картриджа с этиленокидом используется для каждой


загрузки

Стерилизация газом: формальдегид

Формальдегид

- Температура больше, чем в Этилен оксиде: 60-80°C
- Цикл 2 -4 часа
- Канцероген
- Длительное время аэрации для пластика
- Не разрешен в США

Формальдегид

Формальдегид

Преимущества

- Подходит для влагочувствительных изделий
- Новые стерилизаторы комбинируют формальдегид с паром

Недостатки

- Плохое проникновение
- Концентрацию газа тяжело измерить
- Раздражающее действие
- Канцероген

Запрещенный метод стерилизации

Пароформалиновая камера

Исследование Челябинской СЭС

Апрель 2000г.

«СИБИРЬ-ВОСТОК»

Внимание! Информация, изложенная в статье, является справочной и не имеет под собой официальной нормативно-инструктивной документации. Описанный метод стерилизации ИМН не рекомендуется использовать в практике медицинской дезинфекции, о чем свидетельствуют выводы авторов данной статьи.

Влияние формы ИМН и материала, из которого они

	- 1			вплатом си НМN				ИМН из резины, полимеров, стехля					
	Соотношение пола и его * объема	Взято _ проб на стерыль-	Из них несте- риль	простые		сложные		простые		спожные			
Материал, из которого изготовлен стерилизатор				проб вэято	нестер.	проб взято	нестер.	проб взято	нестер.	проб взято	нестер.		
Оргстекло	1:20 < 1,; 20	45 5	лас	лась следующим образом (%):							инструкцие метода не д		
Boero		50	- грамположительные кокки - 44; метода не д - грамположительные палочки - 29; практическо										
Металл	1:20	45 85	- дрожжи -22; как в долж - грамотрицательные кокки - 5. тот необхо										
Boero		130**	T Pame Production										

180

Migro

Основной вывод, который можно сделать в результате анализа наших данных, сведенных в таблицы, заключается в том, что стерилизация и хранение ИМН в парах формальдегида даже в строгом соответствии с

инструкцией по применению этс метода не должны использоваться практическом здравоохранении, т как в должной мере не обеспечин ют необходимый результат. Ес. средний показатель неэффективн сти стерилизации при использован других методов составляет 1,37%, при стерилизации в парах формал дегида он в 6 - 10 раз выше.

Норма: 10-6, т.е. вероятность 0.000001 или 0.0001 %, из 1 000 000 – не более 1 **Результаты:** 7.2 %, из 100 - 7.2, из $1\ 000\ 000 - 72000$

Усиление государственного контроля

Минздрав соцразвития России РОСПОТРЕБНАДЗОР № 01/14112-8-32 от 01.12.08

Гл. санитарный врач РФ, руководитель Роспотребнадзора Г.Г. Онищенко

Руководителям управлений Роспотребнадзора, органов управления здравоохранением, Главным врачам ФГУЗ «Центры гигиены и эпидемиологии» в субъектах РФ

«...не допускать использование для стерилизации эндоскопической техники пароформалиновых и озоновых камер ... так как они не обеспечивают процесс стерилизации и представляет

существенную опасность для здоровья...»

Стерилизация газами (ЭО, ФО)

- 1. Хорошая проникающая способность стерилянта мало ограничений
- 2. Низкая температура, сухой процесс
 - не повреждает инструменты, не образует коррозию эффективный метод стерилизации для инструментов, чувствительных к высоким температурам
- 1. Широкий спектр совместимости (в первую очередь с термолабильными ИМН)
- 2. Эффективность
- 3. Опыт применения
- 4. Наличие методов химического и бактериологического контроля.

Газы: опасность для человека

- В РФ этиленоксид и формальдегид перечислены в ГН 1.1.725-98 Перечень веществ, продуктов, производственных процессов, бытовых и природных факторов, канцерогенных для человека УТВЕРЖДЕНО Постановлением Главного государственного санитарного врача РФ Дата введения: 1февраля 1999г.
- Противораковое общество РФ: Химические вещества и другие факторы, канцерогенность которых для человека доказана (группа 1): Этиленоксид Гемобластозы

Необходимость в аэрации после цикла ЭО

Наименование изделий	При комн. t⁰	В аэраторе при 42°C	В аэраторе при 55°С
ИМН из полимерных материалов, контактирующие с кровью, слизистыми оболочками пациента до 30 мин.	7 дней	16 часов	12 часов
ИМН из полимерных материалов, контактирующие с кровью, слизистыми оболочками пациента более 30 мин.	7 дней	30 часов	24 часов
Сосудистые катетеры, сердечные зонды для отд.интенсивной кардиологии	12 дней	48 часов	30 часов
Диализаторы и принадлежности к ним	21 дней	90 часов	72 часов
Имплантируемые изделия	21 дней	5 дней	72 часов

Длительность аэрации так же зависит от длительности последующего контакта ИМН с кровью пациента.

Аэрация

Метал Стекло Непористые

Cloth Paper

ПВХ Пластик

0 ч

6ч

12 ч

> 12 y

В специальных <u>отдельных</u> аэрационных шкафах идет постоянная подача воздуха и воздействие температуры для удаления EtO из инструментов.

Аэрация после ЭО

- Не более 1 цикла в день
- Риск несоблюдения сроков аэрации – риск для здоровья пациента

Опасность этилен оксида

- Этилен оксид не обладает запахом, бесцветный
- Для контроля ПДК и мониторинга утечки газа нужны мониторирующие системы для мед. персонала и окружающей среды (индивидуальные и комнатные дозиметры)
- Загрузка тележки в аэрационный шкаф
- Заставляет работника контактировать с токсичными парами
- Необходимы средства индивидуальной защиты
- Минимум 10 кратный обмен воздуха в час

Стерилизация газами: минусы

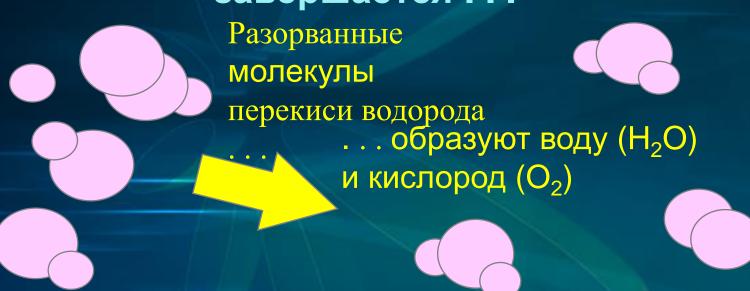
- Небезопасен для пациентов, персонала, окружающей среды:
 - сильный запах
 - токсичные отходы
 - канцероген 1-й категории (первые отчеты в 70-хх), мутаген
 - Взрывоопасность, воспламеняемость баллонов с ЭО необходимо хранить в холодильнике в вертикальном положении.
- Аэрация → длительный цикл (использование ИМН не более 1 раза в день) :
 - Для mixed газа 14 16 часов (2-4 ч. стерилизация + 12 ч аэрация)
 - Для 100% EtO 12 часов (2 ч. стерилизация + 10 ч аэрация)
- Дополнительные системы и ремонт ЦСО
 - отдельное помещение, приточно-вытяжная вентиляция, аэратор, системы утилизации отработанных газов и аксессуары к ним, компрессор или централизованная система подачи сжатого воздуха, холодильное помещение (для хранения баллонов с газом), дренаж, мониторинг утечки газа, индивидуальные дозиметры, водоподготовка
- Необходимость в дальнейшей тех. поддержке!
- Ограничения в применении: ряд полимерных материалов может вступать в реакцию с газами
- Нет датчиков контроля наличия влаги на загружаемых ИМН

НИЗКОТЕМПЕРАТУРНЫЕ СТЕРИЛИЗАТОРЫ НА ОСНОВЕ ПЛАЗМЫ ПЕРОКСИДА ВОДОРОДА

- В 1992 году плазменная технология была впервые применена компанией Johnson & Johnson для стерилизации ИМН и реализована в оборудовании STERRAD
- В России с 1999 года (10 лет)


Что такое плазма?

твердое жидкое газообразное плазма


- Плазма четвертое состояние вещества
- Смесь ионов, электронов и нейтральных атомов и молекул
- Образуется под действием внешних источников энергии (высокая t°, радиационное излучение, э/м поля и др.)
- Сопровождается видимым свечением
- Пример неоновые огни, северное сияние, 99% космоса плазма

Плазма

Важная роль плазмы

Вещество находится в состоянии плазмы только тогда, когда присутствует радиоволны. Когда фаза плазмы завершается . . .

РЕЗУЛЬТАТ: ОТСУТСТВУЮТ ОПАСНЫЕ ОТХОДЫ

Типы инструментов, которые можно обрабатывать плазмой Н2О2

Типы инструментов, которые можно обрабатывать H2O2

- оптика (эндоскопы, цистоскопы, резектоскопы, ларингоскопы)
- видеокамеры, световоды
- кабели, электроды, коагуляторы
- эндоскопические инструменты
- электроинструмент (дрели, шуруповерты, пилы, марцилляторы)
- аккумуляторы
- инструменты для открытой хирургии, клипсонакладыватели
- микрохирургические инструменты
- нейрохирургические наборы
- кардиостимуляторы, ангио- материалы
- контуры аппаратов ИВЛ, наркозно-дыхательной аппаратуры
- дренажи, шланги
- щипцы биопсийные, скальпели, ножницы, зажимы
- зонды, датчики

и многое другое оборудование и инструменты

Плазменный метод стерилизации:

- Гарантированный уровень стерильности 10⁻⁶
 - Безопасность для пациента
 - уменьшение риска возникновения осложнений, связанных с развитием инфекции
- Низкая температура в стерилизационной камере (46°C ±4°C)/ сухой процесс
 - сохранность инструментов и оборудования, чувствительных к повышению температуры
 - продление срока службы инструментов
 - уменьшение затрат на ремонт и закупку новых инструментов
 - Короткий цикл повышение оборота инструментов
 - сокращение необходимого запаса инструментов
 - оптимизация расписания операций

Аппаратные методы стерилизации должны быть стандартизованы

ГОСТ Р ИСО 14937-2012

Стерилизация медицинской продукции. Общие требования к определению характеристик стерилизующего агента и к разработке, валидации и текущему контролю процесса стерилизации медицинских изделий

Дата издания: 13.02.2013

Дата последнего изменения: 18.03.2013

Дата введения: 01.06.2013

ГОСТ Р ИСО 14937-2012

- Настоящий стандарт устанавливает общие требования к построению, валидации и текущему контролю процесса стерилизации медицинских изделий.
- Настоящий стандарт применим к стерилизационному процессу, в котором микроорганизмы инактивируются с помощью физических и/или химических средств.
- Настоящий стандарт предназначен к применению разработчиками, изготовителями стерилизационного оборудования и медицинских изделий, организациями, ответственными за стерилизацию медицинских изделий.
- Настоящий стандарт определяет элементы системы управления качеством (Quality Management System), которые необходимы при контроле характеристик стерилизующего агента, разработке, валидации и текущем контроле стерилизационного процесса

Стерилизация – валидированный процесс освобождения продукта от всех форм жизнеспособных микроорганизмов.

В России термины и определения введены специальным стандартом –

ГОСТ 25375-82. Методы, средства и режимы стерилизации и дезинфекции изделий медицинского назначения. Термины и

определения.

Валидация. Документированная процедура получения результатов, необходимых для подтверждения того, что процесс неизменно дает продукцию, соответствующую заданным требованиям.

Примечание.

Валидация - комплексный процесс, который включает в себя: письменный протокол; доказательство того, что инструменты для сбора данных поверены, оборудование в установленном состоянии отвечает конструкторским условиям и характеристикам (аттестация установленного оборудования), при заданных рабочих условиях позволяет вести процесс в заданных пределах и обеспечивает воспроизводимость, что подтверждается повторными испытаниями и микробиологическими проверками процесса (производственная аттестация процесса или аттестация характеристик процесса).

ГОСТ Р ИСО 17664-2012

Стерилизация медицинских изделий. Информация, предоставляемая изготовителем для проведения повторной стерилизации медицинских изделий

Дата издания: 12.02.2013

Дата последнего изменения: 18.03.2013

Дата введения: 01.06.2013

ГОСТ Р ИСО 17664-2012

- Настоящий стандарт устанавливает требования к информации, предоставляемой изготовителем медицинских изделий, подлежащих повторной стерилизации, а также к организациям, занимающимся их обработкой.
- Настоящий стандарт устанавливает требования к информации, которую должен предоставить изготовитель медицинского изделия для обеспечения безопасной стерилизации и соответствия изделия требованиям, установленным в технической документации.
- Настоящий стандарт не распространяется на текстильные изделия для изолирования пациентов или хирургическую одежду

FOCT ISO 11607-2011

Упаковка для медицинских изделий, подлежащих финишной стерилизации. Общие требования.

Дата издания: 12.07.2013

Дата последнего изменения: 16.07.2013

Дата введения: 01.01.2013

FOCT ISO 11607-2011

- Настоящий стандарт устанавливает требования к одноразовым материалам и многоразовым контейнерам, используемым для упаковывания медицинских изделий, подвергаемых финишной стерилизации, проведенного как в промышленности, так и в учреждениях здравоохранения
- Настоящий стандарт устанавливает основные требования к разработке и валидации процесса упаковывания для производителя медицинских изделий, подвергаемых финишной стерилизации

ГОСТ ISO 11135-2012 Медицинские изделия. Валидация и текущий контроль стерилизации оксидом этилена Дата актуализации текста: 01.08.2013 Статус: принят Дата актуализации описания: 01.08.2013 Тип документа: стандарт Дата введения: 01.01.2015

ГОСТ ISO 11137-1(2)-2011 Стерилизация медицинской продукции. Радиационная стерилизация. Часть 1. Требования к разработке, валидации и текущему контролю процесса стерилизации медицинских изделий Дата актуализации текста: 01.08.2013 Статус: действующий Дата актуализации описания: 01.08.2013 Тип документа: стандарт Дата введения: 01.01.2013 Часть 2. Установление стерилизующей дозы

ГОСТ ISO 11138-1-2012 Стерилизация медицинской продукции. Биологические индикаторы. Часть 1. Технические требования Дата актуализации текста: 01.08.2013 Статус: принят Дата актуализации описания: 01.08.2013 Тип документа: стандарт Дата введения: 01.01.2015

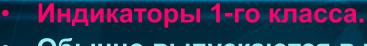
ГОСТ ISO 11138-3-2012 Стерилизация медицинской продукции. Биелогические индикаторы. Часть 3. Биологические индикаторы для стерилизации влажным теплом Дата актуализации текста: **01.08.2013** Статус: принят Дата актуализации описания: **01.08.2013**Тип документа: **стандарт** Дата введения: **01.01.2015**

- ГОСТ ISO 11140-1-2011 Стерилизация медицинской продукции. Химические индикаторы. Часть 1. Общие требования Дата актуализации текста: 01.08.2013Статус: действующий Дата актуализации описания: 01.08.2013Тип документа: стандарт Дата введения: 01.01.2013
- ТОСТ ISO 11140-3-2011 Стерилизация медицинской продукции. Химические индикаторы. Часть 3. Тест-листы к индикаторам 2-го класса для испытаний на проникание пара Дата актуализации текста: 01.08.2013Статус: действующий Дата актуализации описания: 01.08.2013Тип документа: стандарт Дата введения: 01.01.2013
- ГОСТ ISO 11140-4-2011 Стерилизация медицинской продукции. <u>Химические индикаторы. Часть 4. Индикаторы 2-го класса к тест-</u>
 пакетам для определения проникания пара Дата актуализации текста: 01.08.2013Статус: действующий Дата актуализации описания: 01.08.2013Тип документа: стандарт Дата введения: 01.01.2013
- ГОСТ ISO 11140-5-2011 Стерилизация медицинской продукции. Химические индикаторы. Часть 5. Индикаторы 2-го класса для тест-листов и тест-пакетов для испытаний на удаление воздуха Дата актуализации текста: 01.08.2013Статус: действующий Дата актуализации описания: 01.08.2013Тип документа: стандартДата введения: 01.01.2013

В соответствии с инструктивно-методическими документами Минздрава РФ, для получения объективной оценки качества стерилизации ее контроль должен проводиться комплексно:

физическими методами — с помощью контрольноизмерительной аппаратуры (термометры, манометры, таймеры);

химическими методами — с помощью химических индикаторов;


бактериологическими методами.

Физические и химические методы являются экспрессметодами, так как позволяют оперативно контролировать соблюдение критических параметров стерилизации. Только комплексное использование всех методов контроля дает возможность избежать ошибок при проведении стерилизации и гарантирует от использования некачественно простерилизованных изделий.

- 1 КЛАСС ИНДИКАТОРЫ ПРОЦЕССА («СВИДЕТЕЛИ»)
 - 2 КЛАСС ИНДИКАТОРЫ ДЛЯ СПЕЦИАЛЬНЫХ ИСПЫТАНИЙ
 - 3 КЛАСС ОДНОПАРАМЕТРИЧЕСКИЕ ИНДИКАТОРЫ
- 4-6 КЛАССЫ МНОГОПАРАМЕТРИЧЕСКИЕ ИНДИКАТОРЫ

1 класс - индикаторы процесса. Такие индикаторы используются на отдельных упаковках, на стерилизационных контейнерах (биксах), свертках со стерилизуемыми изделиями. Индикаторы процесса свидетельствуют только о том, что изделия подвергались стерилизации и позволяют легко отличить их от непростерилизованных предметов.

- 2 класс индикаторы для специальных контрольных проверок стерилизаторов. Наиболее распространенный индикатор этого класса тест Бови-Дик (Bowie & Dick).
- 3 класс индикаторы одного параметра. Реагируют только на один критический параметр (бензойная кислота, сахароза, гидрохинон).
- 4 класс многопараметровые индикаторы.
 Реагируют на два или более критических параметров.
- <u>5 класс</u> индикаторы-интеграторы. Реагируют если все критические параметры достигли значений необходимых для гибели биотестов.
- <u>6 класс</u> индикаторы-эмуляторы. Реагируют, если все критические параметры достигли регламентированных значений.

• Обычно выпускаются в виде свернутых в рулон клейких лент (наподобие скотча) с нанесенным на их лицевую поверхность химическим индикатором (в виде полосок или надписей). Применяются для удобства отличия изделий, подвергнутых процессу стерилизации, от нестерильных.

Кусочки ленты наклеиваются на подготовленные к стерилизации упаковки, контейнеры, свертки. Могут применяться для закрепления краев упаковочных материалов.

Должны характеризоваться отчетливым необратимым изменением цвета индикатора, нанесенного на полоски.

Индикаторы 2-го класса. ГОСТ ISO 11140-4-2011 Стерилизация медицинской продукции. Химические индикаторы. Часть 4. Индикаторы 2-го класса к тест-пакетам для определения проникания пара

Самый характерный представитель этого класса индикаторов - индикатор теста Бовье-Дика (Bowie-Dick). Он предназначен для испытания эффективности вакуумной системы парового стерилизатора. Выполняемый ежедневно, этот тест должен первым сигнализировать о неисправности стерилизатора. Тест не определяет качество стерилизации как таковое, но является неотъемлемой частью всесторонней программы гарантии стерилизации. С помощью теста пользователь определяет, что вакуумная стадия стерилизатора удаляет достаточное количество воздуха до введения пара в камеру, а также проверяется герметичность камеры в течение цикла стерилизации. Другими словами, с помощью теста Бовье-Дика можно оценить равномерность распределения пара в камере стерилизатора.

- Индикаторы 3-го класса.
 - Раньше часто применялись "термохимические" индикаторы характерные представители этого класса. Сейчас применяются крайне редко,поэтому на рисунке представлены термовременные (двухпараметровые) индикаторы. Термохимический индикатор
 - представляет собой полоску бумаги, на которую нанесена термоиндикаторная краска. Определение параметров, достигнутых в процессе стерилизации, основано на изменении цвета термоиндикаторной краски при достижении "температуры перехода", строго определенной для каждой краски.
- Такие индикаторы применялись для контроля воздушной стерилизации.

- Индикаторы 4-го класса.
- Они отличаются от предыдущего класса только тем, что индикаторная краска меняет свой цвет только в течении определенного времени воздействия контролируемого фактора. Йоэтому чаще всего маркируются двумя цифрами, например: 180-60 (180 градусов, 60 минут).

Индикаторы 5-го класса.

Эти индикаторы уже называются интеграторами.

Цвет контрольной метки интегратора должен необратимо изменяться в ходе стерилизации только при соответствии всех критических параметров примененного процесса необходимым требованиям. К примеру, при температуре 132-135 град.С цвет метки полностью изменится в течение от 3,0 до 3,5 минут при условии воздействия на интегратор насыщенного водяного пара. Аналогично работают интеграторы этиленоксидной стерилизации.

Одновременные испытания химических интеграторов и биологических индикаторов показали, что цвет химического индикатора изменяется не раньше, чем пройдет время, необходимое для полного уничтожения контрольных микроорганизмов биологического индикатора.

Цветной стандарт для сравнения должен быть напечатан на каждой полоске интегратора.

- Индикаторы 6-го класса. Эти индикаторы должны реагировать на все контрольные значения критических параметров метода стерилизации.
- Имеют самые точные из всех предыдущих классов характеристики контроля процесса

• Биологические индикаторы.

Они представляют собой пластиковый контейнер с крышечкой, содержащий хрупкую ампулу с восстанавливающей средой и бумажную полоску, зараженную спорами контрольных микроорганизмов. Индикатор размещается непосредственно в стерилизационной камере, либо закладывается в контейнеры и упаковки, предназначенные к стерилизации, в процессе их подготовки. Никаких предварительных манипуляций с индикатором производить не требуется он полностью готов к применению. После окончания стерилизационного цикла индикатор должен быть извлечен и подвергнут инкубации для контроля инактивации содержащихся в нем спор микроорганизмов. После извлечения из камеры стерилизатора надо раздавить находящуюся внутри ампулу и инкубировать при рекомендованной температуре в течение необходимого времени - обычно это 24 часа.

Ошибка стерилизации проявляется изменением цвета и/или помутнением среды.

ВИДЫ КОНТРОЛЯ СТЕРИЛИЗАЦИИ В ЛПУ

1.	КОНТРОЛЬ ОБЕСПЕЧЕНИЯ ТРЕБУЕМЫХ ЗНАЧЕНИЙ ПАРАМЕТРОВ РЕЖИМОВ СТЕРИЛИЗАЦИИ	 КОНТРОЛЬ РАБОТЫ СТЕРИЛИЗАЦИОН НОГО АППАРАТА (с помощью средств физического, химического и бактериологического контроля) КОНТРОЛЬ ХИМИЧЕСКОГО СТЕРИЛИЗУЮЩЕГО СРЕДСТВА И ХАРАКТЕРИСТИК ЦИКЛА СТЕРИЛИЗАЦИИ
2.	КОНТРОЛЬ ОБЕСПЕЧЕНИЯ НЕОБХОДИМЫХ СОПУТСТВУЮЩИХ УСЛОВИЙ СТЕРИЛИЗАЦИИ	 КОНТРОЛЬ УПАКОВОЧНОГО МАТЕРИАЛА НА СООТВЕТСТВИЕ МЕТОДУ СТЕРИЛИЗАЦИИ И ПРАВИЛАМ ПРИМЕНЕНИЯ КОНТРОЛЬ ПРАВИЛЬНОСТИ ЗАГРУЗКИ/РАЗМЕЩЕНИЯ ИЗДЕЛИЙ ПРИ СТЕРИЛИЗАЦИИ КОНТРОЛЬ ОБЕСПЕЧЕНИЯ АСЕПТИЧЕСКИХ УСЛОВИЙ ПОСЛЕ ПРЕКРАЩЕНИЯ ДЕЙСТВИЯ СТЕРИЛИЗУЮЩЕГО АГЕНТА
3.	КОНТРОЛЬ ЭФФЕКТИВНОСТИ ОСУЩЕСТВЛЯЕМОГО ПРОЦЕССА СТЕРИЛИЗАЦИИ	 КОНТРОЛЬ СОВОКУПНОГО ДЕЙСТВИЯ ВСЕХ ФАКТОРОВ ПРИ СТЕРИЛИЗАЦИИ: КОНТРОЛЬ СТЕРИЛЬНОСТИ ИЗДЕЛИЙ ХИМИЧЕСКИЙ КОНТРОЛЬ ВНУТРИ УПАКОВОК С ИЗДЕЛИЯМИ/ВНУТРИ ИЗДЕЛИЙ

ХАРАКТЕРНЫЕ ОСОБЕННОСТИ СОВЕРШЕНСТВОВАНИЯ СТЕРИЛИЗАЦИОННЫХ МЕРОПРИЯТИЙ В ЛПУ

РАСШИРЕНИЕ ЧИСЛА РАЗРАБОТЧИКОВ, ПРОИЗВОДИТЕЛЕЙ И ПОСТАВЩИКОВ СТЕРИЛИЗАЦИОННЫХ СРЕДСТВ И ОБОРУДОВАНИЯ НОРМАТИВНЫЕ, РАСПОРЯДИТЕЛЬНЫЕ, МЕТОДИЧЕСКИЕ ДОКУМЕНТЫ

УВЕЛИЧЕНИЕ РАЗНООБРАЗИЯ ИЕДИЦИНСКИХ ИЗДЕЛИЙ ПОДЛЕЖАЩИХ СТЕРИЛИЗАЦИИ

ГАРМОНИЗАЦИЯ ПОДХОДОВ ПОВЫШЕНИЕ
ТРЕБОВАНИЙ К
КАЧЕСТВУ
ОБРАБОТКИ ИЗДЕЛИ

НЕОБХОДИМОСТЬ ПОВЫШЕНИЯ КАЧЕСТВА ПОДГОТОВКИ ПЕРСОНАЛА ЛПУ НЕОБХОДИМОСТЬ ОСНАЩЕНИЯ ЛПУ СОВРЕМЕННЫМИ СТЕРИЛИЗАЦИОННЫМИ СРЕДСТВАМИ, ОБОРУДОВАНИЕМ И МАТЕРИАЛАМИ

ПУТИ СОВЕРШЕНСТВОВАНИЯ ПРОЦЕССА СТЕРИЛИЗАЦИИ

- РАЗРАБОТКА ОБОРУДОВАНИЯ, ПОЗВОЛЯЮЩЕГО РЕАЛИЗОВАТЬ НОВЫЕ МЕТОДЫ СТЕРИЛИЗАЦИИ С БОЛЕЕ КОРОТКИМИ ИЛИ БОЛЕЕ ЩАДЯЩИМИ РЕЖИМАМИ
- РАЗРАБОТКА НОВЫХ ХИМИЧЕСКИХ СРЕДСТВ И ОПТИМАЛЬНЫХ РЕЖИМОВ ИХ ПРИМЕНЕНИЯ, ОБЕСПЕЧИВАЮЩИХ ЭФФЕКТ СТЕРИЛИЗАЦИИ В ПРИЕМЛЕМЫЕ СРОКИ
- УВЕЛИЧЕНИЕ НОМЕНКЛАТУРЫ ХИМИЧЕСКИХ СРЕДСТВ НА ОСНОВЕ РАЗЛИЧНЫХ ДЕЙСТВУЮЩИХ ВЕЩЕСТВ, ПОЗВОЛЯЮЩИХ ПРОВОДИТЬ СТЕРИЛИЗАЦИЮ ИЗДЕЛИЙ ИЗ РАЗНОРОДНЫХ МАТЕРИАЛОВ
- РАЗРАБОТКА ХИМИЧЕСКИХ ИНДИКАТОРОВ РАЗЛИЧНЫХ КЛАССОВ, ПОЗВОЛЯЮЩИХ ОСУЩЕСТВЛЯТЬ В СТЕРИЛИЗАТОРАХ РАЗНЫХ ТИПОВ ОПЕРАТИВНЫЙ ВНЕШНИЙ И ВНУТРЕННИЙ КОНТРОЛЬ СТЕРИЛИЗАЦИИ

Тенденции в медицине

- Изменение количества, строения, стоимости инструментов
- Рост объема высокотехнологичного инструментария, требующего щадящего ухода с видеокамерами (оптикой), электроникой, узкими каналами и т.п., из полимеров, дорогих сплавов, стекла и проч.
- Рост количества манипуляций и ограниченное количество дорогих инструментов в ЛПУ –> необходим быстрый оборот инструментов –> тах быстрая и качественная обработка
- Экономия бюджета ЛПУ на закупку и ремонт инструментов
- Повышение качества стерилизации одно из важнейших направлений в профилактике ВБИ
- Безопасность пациент, персонал, окружающая среда

