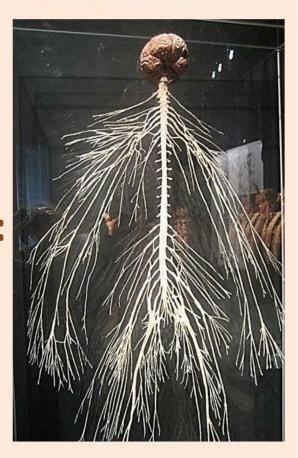
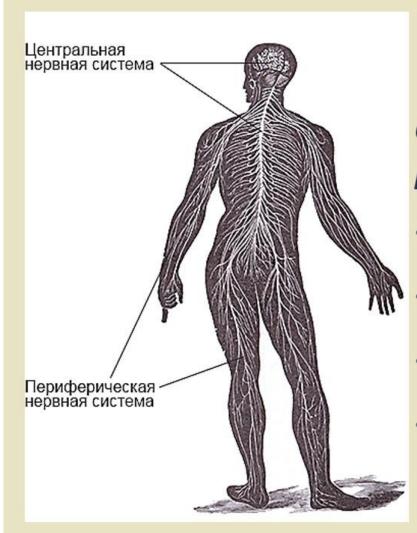
ВВЕДЕНИЕ В НЕРВНУЮ СИСТЕМУ

НЕРВНАЯ СИСТЕМА

- Нервная система это сложная сеть структур, которая пронизывает весь организм человека.
- Нервная система обеспечивает саморегуляцию жизнедеятельности организма благодаря её способности реагировать на внешние и внутренние воздействия (стимулы).

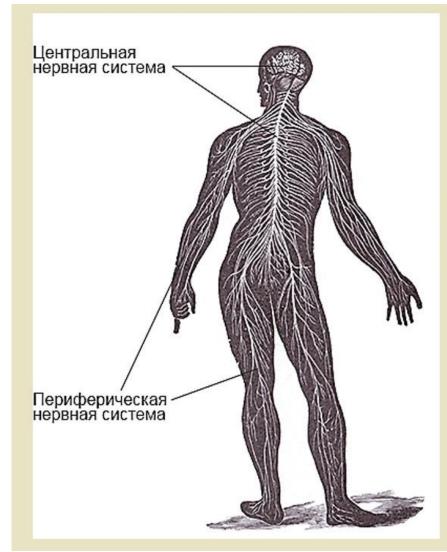

ВЛИЯНИЕ НЕРВНОЙ СИСТЕМЫ НА ОРГАНЫ


- **У ПУСКОВОЕ ВЛИЯНИЕ.**
- √ вызывает деятельность органа, находящегося в покое;
- √ прекращение импульса ведет к возвращению органа в исходное состояние.

- МОДУЛИРУЮЩЕЕ ВЛИЯНИЕ
 - изменяет интенсивность деятельности органа;
 - распространяется как на органы, деятельность которых без нервных влияний невозможна, так и на органы, которые могут работать без пускового влияния нервной системы.

ОРГАНЫ НЕРВНОЙ СИСТЕМЫ

- Центральные структуры:
 - √ головной мозг;
 - √ спинной мозг.
- Периферические образования:
 - √ нервы и их окончания;
 - ✓ нервные сплетения;
 - √ нервные узлы (ганглии).



ЦНС

выполняет интегрирующую роль:

- управляет деятельностью опорнодвигательного аппарата;
- осуществляет регуляцию работы внутренних органов;
- обеспечивает сознание и все виды психической деятельности;
- обеспечивает формирование взаимодействия организма человека с окружающей средой.

ПНС

выполняет роль проводника:

• обеспечивает двухстороннюю связь ЦНС со всеми клетками, тканями и органами.

ДЕНДРИТЫ воспринимают возбуждающие и тормозные влияния от других нейронов или из внутренней и внешней среды и проводят их к телу нервной клетки.

ТЕЛО НЕЙРОНА выполняет функцию сумматора приходящих нервных импульсов, обеспечивает трофическую функцию по отношению к отросткам (аксону и дендритам).

АКСОН проводит нервные импульсы к другому нейрону или эффектору (рабочему органу).

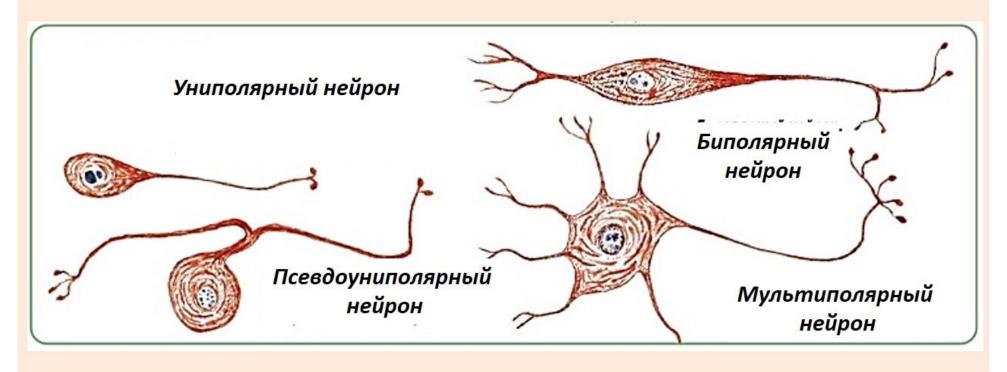
КЛАССИФИКАЦИЯ НЕЙРОНОВ ПО ФУНКЦИИ

Чувствительные

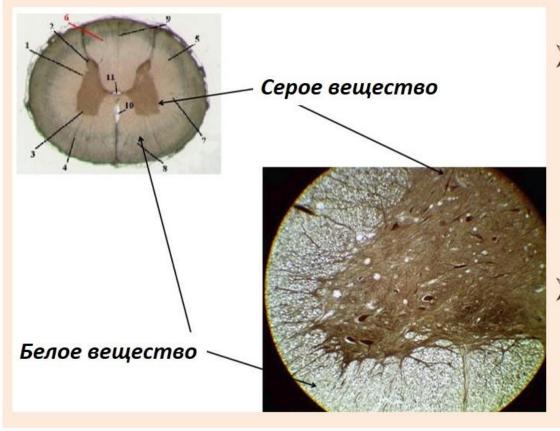
(афферентные, рецепторные, центростремительные) получают информацию непосредственно от рецепторов и располагаются за пределами ЦНС в нервных узлах.

Вставочные

(промежуточные, контактные)


 их тела и отростки не выходят за пределы ЦНС. Они осуществляют связь между чувствительными и двигательными нейронами.

Двигательные

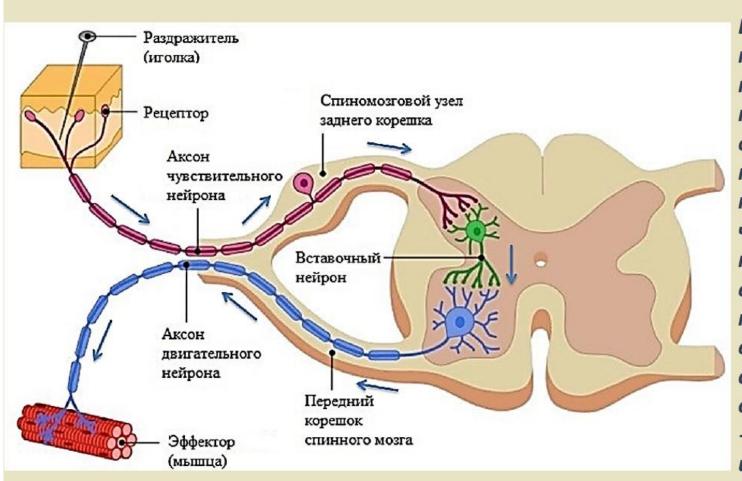

(эфферентные, центробежные, исполнительные) передают импульсы от головного и спинного мозга к рабочим органам мышцами железам.

КЛАССИФИКАЦИЯ НЕЙРОНОВ

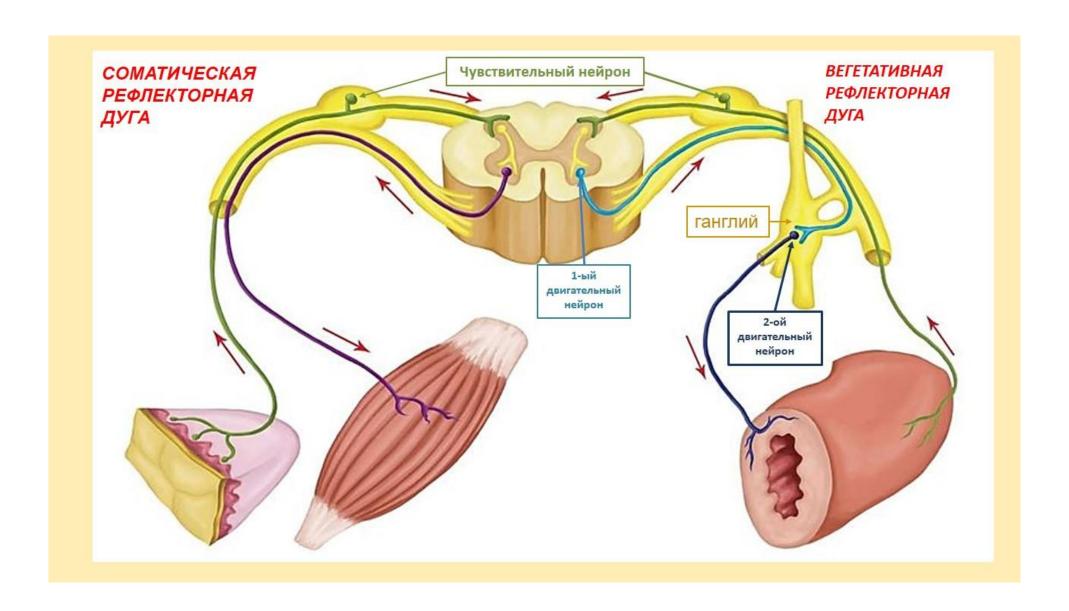
по количеству отростков

СЕРОЕ И БЕЛОЕ ВЕЩЕСТВО

- СЕРОЕ ВЕЩЕСТВО это совокупность тел нейронов с близко расположенными участками отростков.
- БЕЛОЕ ВЕЩЕСТВО это отростки нейронов.


РЕФЛЕКС является УНИВЕРСАЛЬНОЙ ФОРМОЙ ВЗАИМОДЕЙСТВИЯ ОРГАНИЗМА И СРЕДЫ (как внешней, так и внутренней).

РЕФЛЕКС — это РЕАКЦИЯ ОРГАНИЗМА НА внешний или внутренний РАЗДРАЖИТЕЛЬ.


РЕФЛЕКС осуществляется с участием ЦЕНТРАЛЬНОЙ НЕРВНОЙ СИСТЕМЫ.

В нервной системе прохождение нервных импульсов по цепи нейронов осуществляется только в одном направлении: om чувствительного нейрона K вставочному нейрону, om вставочного K двигательному, от двигательного органуисполнителю.

ДЕЛЕНИЕ НЕРВНОЙ СИСТЕМЫ ПО ФУНКЦИОНАЛЬНОМУ ПРИЗНАКУ

СОМАТИЧЕСКАЯ НЕРВНАЯ СИСТЕМА

- обеспечивает иннервацию тела (сомы), кожи, скелетных мышц, некоторые внутренние органы, имеющих в своей строении скелетные мышцы (язык, гортань, глотка, верхняя треть пищевода);
- получает раздражения из внешней среды;
- осуществляет непрерывное взаимодействие организма с окружающей средой через двигательные реакции;
- подчинена воле человека;
- скорость распространения импульса высокая (100 м/с);
- реакция быстрая (быстро возникает, быстро затухает);
- эффекторное (двигательное) звено рефлекторной дуги состоит из одного нейрона (центрального).

ВЕГЕТАТИВНАЯ НЕРВНАЯ СИСТЕМА

- иннервирует органы растительной жизни, с функцией которых связаны рост, развитие и размножение организма (все внутренности, железы, гладкие мышцы, сердце сосуды);
- получает раздражения от внутренних органов;
- регулирует все жизненные процессы, происходящие в организме при помощи гладкой мускулатуры и желез);
- не подчинена воле человека;
- скорость распространения импульса невысокая (7-10 м/с);
- реакция медленная (медленно возникает, медленно затухает);
- эффекторное (двигательное) звено рефлекторной дуги состоит из двух нейронов (центрального и ганглионарного); аксоны центральных нейронов выходят из центра и заканчиваются на клетках вегетативных ганглиев (узлов) и называются преганглионарными волокнами; аксоны исполнительных нейронов, выходящие из ганглиев (узлов) называются постганглионарными.

СИМПАТИЧЕСКАЯ ЧАСТЬ - возбуждает работу органов, приспосабливает организм к интенсивной деятельности (усиливается при стрессовых ситуациях)

ПАРАСИМПАТИЧЕСКАЯ ЧАСТЬ - тормозит работу органов, способствует расслаблению организма и восстановлению его внутренних ресурсов

		(усиливается при стрессовых ситуациях)		его внутренних ресурсов	
ЦЕНТРАЛЬНЫЙ ОТДЕЛ	ПЕРИФЕРИЧЕСКИЙ	ЦЕНТРАЛЬНЫЙ	ПЕРИФЕРИЧЕСКИЙ	ЦЕНТРАЛЬНЫЙ	ПЕРИФЕРИЧЕСКИЙ
- спинной мозг;	ОТДЕЛ	ОТДЕЛ	ОТДЕЛ	ОТДЕЛ	ОТДЕЛ
- головной мозг.	- нервы* и их окончания	- симпатические	- рецепторы;	Головной отдел	Головной отдел
	(рецепторы, синапсы);	ядра (боковые рога	- преганглионарные	(краниальный):	(краниальный):
	- нервные сплетения;	спинного мозга) с 8-	нервные волокна;	- ядра, залегающие	- рецепторы;
	- узлы (ганглии).	го шейного по 3-ий	- постганглионарные	в стволе головного	- преганглионарные и
		поясничный	нервные волокна**;	мозга (в	постганглионарные
		спинномозговые	- вегетативные	продолговатом	нервные волокна***;
		сегменты	сплетения;	мозге, мосту,	- парасимпатические
			- симпатические	среднем мозге).	узлы (ганглии)****;
			ганглии (образуют	Крестцовый отдел	
			парные цепочки вдоль	(сакральный)	Крестцовый отдел
			позвоночного столба,	- ядра, залегающие	(сакральный):
			соединяются между	к крестцовом	- рецепторы;
			собой поперечными и	отделе спинного	
			продольными	мозга (боковые	

	межузловыми ветвями –	рога серого	- преганглионарные и
	симпатические стволы,	вещества) с 1 по 4	постганглионарные
	находятся далеко от	крестцовые	волокна*****;
	органа).	спинномозговые	- вегетативные
		сегменты.	сплетения;
			- парасимпатические
			ганглии (залегают
			около органа или
			внутри него)

^{*} Спинномозговые нервы (иннервируют поперечнополосатую мускулатуру туловища и конечностей); черепные нервы (иннервируют поперечные мышцы, расположенные в области головы и частично шеи).

*** Преганглионарные парасимпатические волокна головного отдела идут в составе III, VII, IX, X пары черепных нервов, постганглионарные парасимпатические нервные волокна (идут в составе ветвей тройничного нерва (V пара) и блуждающего нерва (X пара).

**** Парасимпатические узлы: ресничный, крылонебный, поднижнечелюстной, подъязычный, ушной — места перерыва преганглионарных волокон, идущих в составе III, VII, IX пары черепных нервов. Большая часть волокон X пары черепных нервов прерывается на нейронах (парасимпатических клетках Догеля I типа) многочисленных вегетативных ганглиев, входящих в состав органных вегетативных сплетений пищеварительной и дыхательной систем, сердца, кровеносных сосудов шеи, грудной и брюшной полостей, расположенных около органа или внутри стенки органа (для полых органов) или интраогранно (для паранхиматозных органов). Меньшая часть волокон совершает перерыв на нейронах (клетках Долго-Сабурова) парасимпатических вегетативных ганглиев, расположенных по ходу ствола блуждающего нерва между его волокнами.

**** Преганглионарные волокна постганглионарные волокна.

УРОВНИ ИНТЕГРАЦИИ В НЕРВНОЙ СИСТЕМЕ					
Уровень интеграции	Решаемая задача	Механизм			
Первый уровень – интеграция на уровне	Обеспечивает регуляцию потока	Интеграция обеспечивается:			
рецептора	сенсорной информации, то есть первичный	- избирательная чувствительность			
	отбор воспринимаемых раздражителей по	рецепторов (порог восприятия			
	интенсивности, продолжительности,	раздражителя);			
		- способностью рецепторов к адаптации.			

^{**} Преганглионарные симпатические волокна идут в составе спинномозговых нервов, постганглионарные волокна не образуют отдельных нервных стволов, идут к органу по сосудам, преимущественно артериальным, образуя на их стенках сплетения, имеющие названия одноименные с сосудами, на которых они формируются.

	модальности и формирует нервные импульсы.	Частота импульсов в нервных окончаниях рецепторов снижается при продолжительном воздействии стимула. Рецепторы во многих случаях реагируют не на присутствие стимула как таковое, а на его появление (или, наоборот, выключение).
Второй уровень – интеграция на уровне нейрона	Обеспечивает обработку информации, вырабатывает временную последовательность потенциалов действия.	Интеграция обеспечивается:
Третий уровень – интеграция на уровне нейронной сети (нейрональный ансамбль, модуль)	Обеспечивает формирование программы действия, рефлекторные акты.	Интеграция обеспечивается: - способностью нейронов устанавливать друг с другом морфофункциональные связи (локальные нейронные сети, нейрональный ансамбль, модуль), в каждой из которых реализуются принципы конвергенции, дивергенции, реципрокности, доминанты и т.д.).
Четвертый уровень – интеграция на уровне нервного центра	Обеспечивает осуществление рефлексов, поведенческих актов, управление процессами на периферии.	Интеграция обеспечивается:

		Связи могут быть генетически
		детерминированы или формироваться в
		процессе жизнедеятельности.
Пятый уровень – интеграция на уровне	Обеспечивает организацию	Интеграция обеспечивается
нервных центров, расположенных в разных	деятельности организма как единого целого	- объединением в каждый конкретный
отделах ЦНС (межцентральная интеграция)		момент времени нервных центров,
		расположенных в разных отделах ЦНС в
		единый ансамбль при соблюдении принципа
		субординации.