

ADHESION IN RESTORATIVE DENTISTRY

ADHESION

- Definition
 - Adhesion is the bonding of dissimilar materials by the attraction of atoms or molecules.

Introduction

- Every dental restoration requires retention by some system of connection or attachment.
- The scientific beginnings of dental adhesion originated in the <u>early 1950s</u> with studies of bonding to enamel and dentin.
- Now the bonding agents are used routinely in restorative and preventive dentistry.

INDICATIONS AND ADVANTAGES OF ADHESION

Indications for Adhesion

- Direct resin composite restorations
 caries, fractures, reshaping, masking
- Bond all-ceramic restorations
 veneers, inlays, onlays, crowns
- Bond amalgam
- Resin-retained fixed-partial dentures
- Pit and fissure sealants
- Orthodontic brackets
- Treat dentinal hypersensitivity
- Core build-ups
- Repair fractured porcelain and composite

Bonding Direct Restorations

Bond Indirect Restorations

Bond resin retained fixed partial dentures

Advantages Of Adhesion

- Help offset polymerization shrinkage
 reduce marginal leakage
 - staining
 - sensitivity
 - caries
- Adhesion
 - conservation of tooth structure
 internal splinting
- Esthetic restorations

MECHANISM OF ADHESION

Mechanisms of adhesion

• Two mechanisms

<u>Chemical adhesion</u>

 Involves bonding at the atomic or molecular level (replacement of minerals from hard tissue by resin monomers)

• <u>Mechanical adhesion</u>

- is based on retention by the interlocking or the penetration of one phase into the surface of the other (retentive interlocking).
- micromechanically interlocked
- In many cases chemical and mechanical adhesion occur together

Requirements For Optimal Adhesive Bonding

- Clean surface of the substrate
- Good wetting of the substrate by adhesive, have a low contact angle, and spread onto the surface
- Adaptation to the substrate produces intimate approximation of the materials without entrapped air or other intervening materials
- The interface include the sufficient physical, chemical and /or mechanical strength to resist intraoral forces of debonding; and
- Good curing of the adhesive as recommended for use.

Bonding agents

COMPOSITION OF BONDING AGENTS

Composition of Bonding Agents

- Etchants
- Primers
- Adhesives
- Initiators and accelerators
- Fillers.
- Other ingredients
 - fluoride or antimicrobial ingredients
 - glutaraldehyde as a desensitizer

Composition contd

• Etchants

- Most commonly used are the phosphoric acid solutions and gels(37%, 35%, 10%) are the most reliable etchants used. These are also called conditioners because they are relatively strong acids (pH = 1.0).

• Primers

 Primers are hydrophilic monomers usually carried in a solvent. Acidic primers containing carboxylic acid groups are used in self etching bonding agents. The solvents used in primers are acetone, ethanolwater; or primarily water.

• Adhesives

- Adhesives are generally hydrophobic, dimethacrylate oligomers that are compatible with monomers used in the primer and composite.

Composition contd

• Initiators and accelerators

- Light cured bonding agents contain an activator camphoroquinone and an organic amine. Dual cured bonding agents include a catalyst to promote self-curing
- Fillers
 - Most bonding agents are unfilled, but some contain inorganic filler ranging from 0.5% to 40% by weight.

• Other ingredients

- Bonding agents may contain fluoride or antimicrobial ingredients
- glutaraldehyde as a desensitizer

BONDING TO ENAMEL AND DENTINE

Variations in Tooth Structure

- Enamel
 - more predictable bonding
 - more homogeneous structure
 - higher inorganic content
 - higher surface energy
- Dentin
 - less predictable bonding
 - higher variability
 - higher organic content

Enamel Bonding

- Developed by Buonocore-1955
- Etching
 - various acids
 - traditionally phosphoric acid

- creates micropores (acidic solution will dissolve (etch) away some of enamel mineral content. The net result of this etching process is that at a microscopic level the surface of the tooth enamel will have become very roughened).
 - 5 50 microns deep
- increases surface energy
- increases wettability

Enamel Bonding Process

- Untreated enamel surface is either smooth (not retentive) or covered by plaque
- Steps for bonding enamel
 - *Roughen the enamel surfaces-* to expose prism rods in a perpendicular, longitudinal, or tangential way.
 - *Condition* the enamel surface
 - Apply ecthant: Application of 30% to 40% phosphoric acid removes about 10 μm of the superficial enamel, resulting in a rough surface with partly dissolved enamel rods down to a depth of 10 to 20 μm for 30 -60s
 - *Remove ecthant* using water, the blow/blot dry the enamel surface
 - Apply bonding agent
 - Blow off the excess bonding agent
 - Cure

Etched enamel surface

- Acid etching of enamel results in a rough and enlarged surface with high surface energy.
- Such a surface promotes wettability and improved micromechanical retention and meets the requirements for effective adhesion
- However, the high energy of the acid-etched enamel is also attractive to other liquids like water, saliva, blood, or sulcus fluid.
- Contact of any liquid to the conditioned enamel will decrease the surface energy, resulting in a reduced wettability of the hydrophobic adhesive.
- Therefore, isolation by rubber dam is preferred over isolation with cotton rolls.

Etched enamel

Etching pattern of enamel after treatment with 37% phosphoric acid for 60 seconds (SEM 4,000x).

Enamel Bonding

- Low-viscosity monomers
 - examples
 - Bis-GMA
 - UDMA
 - TEGDMA
 - HEMA
- Predictably high bond strengths
 - > 20 MPa

Conditioner

- Chemical alteration of surface
 - acids
 - phosphoric, citric, maleic, nitric

- Removes dentinal smear layer
 - exposes collagen fibrils
- Simultaneous enamel etch
- Rinse
 - keep moist

Primer

• Hydrophilic monomers

- dissolved in acetone, alcohol, or water

- Displaces water
- Promotes infiltration into collagen
- Lightly air dry

- drive off solvents, water

• Transforms hydrophilic to hydrophobic

Bonding to dentine

Dentine Structure

Problems In Bonding To Dem

- Dentine composition
- Dentinal tubules
- Changes in dentin structure
- Smear layer
- Dentinal wetness.

Features of clinically successful Dentine Bonding- 5 steps

STEP 1

Cavity margins placed in enamel wherever possible ; use of a bevel is preferred when clinically appropriate; acid conditioning must be adequate - a minimum of **15 to 30s**

STEP 2

Dentine conditioning should be brief - a maximum of **15s-** to remove the smear layer

• **STEP 3**

- Conditioned dentine should be kept **moist as the enamel is being dried by placing a moist cotton pellet**
- **STEP 4**: Apply primer-Multiple primer coats will ensure optimal dentinal priming

• **STEP 4**

Adhesive bonding resin provides a valuable elastic intermediate layer for stress absorption: it should be uniform and **not air thinned**

• **STEP 5**

Insertion of resin composite in <u>diagonal increments</u> will <u>reduce stresses of **polymerization shrinkage**</u> at the bonded interface: each increment should be thoroughly cured

CLASSIFICATION OF DENTIN BONDING AGENTS

Enamel and dentin bonding agents

- Development
 - seven generationsChronologic order
- First Generation _____ Seventh generation

First Generation (1950-1970's)

- Hydrophobic monomers
- Very low bond strengths
 2 to 3 MPa
- First commercial dentinal adhesive
 - Cervident SS White (1965)
 - claimed chemical bond to calcium
 - retention only 50% at 6 months
 - Class 5

Second Generation (late 70's to mid 80's)

- Early 1970s introduced acid-etching of enamel; and enamel bonding agents of self cured nature
- Phosphorous-ester monomers
 - enhanced surface wetting
 - claimed chemical bond to calcium
 - smear layer predominately intact
 - fear of etching dentin
- Low bond strengths
 - 5 to 6 MPa
- Retention 70% at 1 year
 - Class 5

Third Generation (mid-80's)

- Developed hydrophobic enamel bonding agents. hydrophilic dentin bonding agents, and light cured components
- Mechanism of action
 - mildly acidic hydrophilic monomer
 - modified/altered smear layer
- Moderate bond strengths
- Improved short / long term success

Fourth Generation

(early 1990's)

- Mid to late 1980s developed for removal of dentin smear layer; acidic monomers and acidic pretreatments; reduction of steps in bonding technique; multiuse bonding agents
- Multi-step
 - condition dentin
 - remove smear layer
 - primer
 - adhesive
- High bond strengths
 - Retention 98 to 100 % at 3 yrs
 - Class 5

Fifth Generation (late 1990's)

- Early 1990s developed etching to achieve hybrid layer in dentin; hydrophilic agents for both enamel and dentin; bonding to moist tooth structure; single-bottle primeradhesive
- Attempt to simplify by reducing the number of bottles
 - combined primer and adhesive
- High bond strengths

Sixth Generation (late 1990's)

- Mid to late 1990s developed self-etching primers and primer-adhesive; light-and dual-cured options
- Combined conditioner and primer
 - moderate bond strengths
- Combined conditioner, primer and adhesive
 - lower bond strengths

Seventh Generation (most recent)

- In future hope that the development will take place to make low-shrinkage- self-adhesive restorative materials.
- "All-in-one" adhesives
 - combined conditioner,
 primer and adhesive
 - one-step
- No mixing
- Low bond strengths

Currently Available Generations

- Fourth Generation Three-step Etch & rinse
- Fifth Generation Two-step Etch & rinse
- Sixth Generation
 - Two-step Self-etch
 - One-step Self-etch
 - -mix
- Seventh Generation
 - One-step Self-etch
 - -no mix

Adhesive Categories

- Etch & Rinse
 - Three-Step
 - conditioner, primer, adhesive
 - Two-Step
 - conditioner, (primer & adhesive)
- Self-Etch
 - Two-Step
 - (conditioner & primer), adhesive
 - One-Step
 - (conditioner & primer & adhesive)
- Glass Ionomer
 - Two-Step
 - conditioner, resin-modified glass-ionomer mixture

Etch & Rinse (Three-Step)

- Conditioner
- Primer
- Adhesive resin

- Examples
 - Scotchbond Multi-Purpose
 - Optibond FL

Conclusions

- Trend toward simplified application
 - reduced number of steps
 - not necessarily better

