

Предварительный (эксплораторный) анализ данных в R

Лакман Ирина Александровна

Казань, 2025

План лекции

Пакет эксплораторного анализа: dlookr

Что такое эксплораторный анализ данных и зачем он нужен

Эксполаторный анализ – комплекс методов по предварительному анализу «сырой» (первичной) информации.

Эксплораторный анализ позволяет:

- > определиться с дизайном исследования,
- понять какой набор инструментов моделирования можно применить к собранному набору данных,
- оценить достаточность собранной информации,
- выделить необходимость в дополнительном наборе недостоющей информации

Эксплораторный анализ включает этапы:

- проверка полноты данных (отсутствия пропусков)
- проверка наличия аномальных наблюдений
- графический анализ
- выявление зависимостей между признаками (корреляционный анализ)

Пакет эксплораторного анализа: finalfit

```
library(finalfit)
ff glimpse(melanoma)
#> $Continuous
                 label var type n missing n missing percent
                          <dbl> 205
                                                                              10.0
                          <dbl.> 205
                                                                        0.6
                                                                              1.0
                status
#> status
                         <dbl.> 205
                                                                        0.5
                                                                              0.0
                                                                52.5
                         <dbl> 205
                                                                      16.7
#> age
                  age
                                                         0.0 1969.9
                          <dbl> 205
                                                                        2.6 1962.0
#> year
                 vear
#> thickness thickness
                          <dbl.> 205
                                                                        3.0
                                                                              0.1
#> ulcer
                 ulcer
                          <dbl> 205
                                                                        0.5
                                                                              0.0
             quartile 25 median quartile 75
                  1525.0 2005.0
#> time
                                     3042.0 5565.0
                    1.0
                           2.0
                                       2.0
                                              3.0
#> status
                           0.0
                    0.0
                                       1.0
                                              1.0
#> sex
                   42.0
                           54.0
                                      65.0
                                             95.0
#> age
                 1968.0 1970.0
                                     1972.0 1977.0
#> year
                           1.9
                                       3.6
                                             17.4
#> thickness
                     0.0
                           0.0
                                       1.0
                                              1.0
#> ulcer
                                                            FINALFI
#> $Categorical
#> data frame with 0 columns and 205 rows
```

Библиотека **finalfit** подходит для подготовки практически любого набора данных

Функция **ff_glimpse()** обеспечивает удобный обзор всех данных в виде таблицы или фрейма данных.

ff_glimpse() разделяет переменные на непрерывные и категориальные.

Появление переменных в том порядке, в котором они появляются во фрейме данных или в таблице осуществляется с помощью команд missing_glimpse() или tibble::glimpse()

mis	missing_glimpse(melanoma)									
#>		label	var_type	n	missing_n	missing_percent				
#>	time	time	<dbl></dbl>	205	0	0.0				
#>	status	status	<dbl></dbl>	205	0	0.0				
#>	sex	sex	<dbl></dbl>	205	0	0.0				
#>	age	age	<dbl></dbl>	205	0	0.0				
#>	year	year	<dbl></dbl>	205	0	0.0				
#>	thickness	thickness	<dbl></dbl>	205	0	0.0				
#>	ulcer	ulcer	<dbl></dbl>	205	0	0.0				

Пакет эксплораторного анализа: finalfit

В ходе анализа пропущенных значений у зависимых и независимых переменных, функция **missing_compare() (библиотека finalfit)** позволяет определить статистическую значимость различий в количестве пропущенных значений у зависимой переменной по всем объясняющим переменным.

missing_compare(data, dependent, explanatory, p = TRUE, na_include = FALSE)

Набор данных

Переменная, с помощью которой проверяют пропуски других переменных

Переменные, по которым будут проверяться пропуски

Пакет эксплораторного анализа: finalfit

Также библиотека позволяет провести структурные и аналитические группировки (в том числе многофакторные) и вычислить автоматически между признаками различия согласно статистическим тестам. explanatory = \underline{c} ("age.factor", "sex.factor", "obstruct.factor") dependent = 'mort_5yr'colon_s $\underline{\%>\%}$ summary_factorlist (dependent, explanatory, p=TRUE,

add_dependent_label=TRUE) -> t1

Dependent: Mortality 5 ye	ar	Alive	pvalue	
Age	<40 years	31 (46.3)	36 (53.7)	0.020
100 mm - 1	40-59 years	208 (61.4)	131 (38.6)	
	60+ years	272 (53.4)	237 (46.6)	
Sex	Female	243 (55.6)	194 (44.4)	0.889
	Male	268 (56.1)	210 (43.9)	
Obstruction	No	408 (56.7)	312 (43.3)	0.189
	Yes	89 (51.1)	85 (48.9)	
Perforation	No	497 (56.0)	391 (44.0)	0.671
	Yes	14 (51.9)	13 (48.1)	

Пакет эксплораторного анализа: dlookr

Диагностика, исследование и преобразование данных с помощью библиотеки эксплораторного анализа **dlookr.**

Функции:

Диагностика качества данных.

Нахождение подходящих сценариев для проведения последующего анализа путем изучения и понимания данных.

Получение новых переменных или выполнение преобразования переменных. Автоматическое создание отчетов для трех вышеуказанных задач.

• <u>diagnose()</u> позволяет диагностировать переменные в фрейме данных. Как и в любых других dplyr функциях, первым аргументом является тиббл (или фрейм данных). Второй и последующие аргументы относятся к переменным внутри фрейма данных.

Пакет эксплораторного анализа: dlookr

Переменные объекта, tbl_df возвращаемые, <u>diagnose</u> () следующие.

- variables: имена переменных
- types: тип данных переменных
- missing_count: количество пропущенных значений
- missing_percent: процент пропущенных значений
- unique_count: количество уникальных значений
- unique_rate: ставка уникального значения. unique_count / количество наблюдений

Пакет эксплораторного анализа: dlookr

diagnose_numeric() диагностирует числовые (непрерывные и дискретные) переменные в кадре данных. Использование такое же diagnose(), но возвращает больше диагностической информации. Однако если вы укажете нечисловую переменную во втором и последующих списках аргументов, эта переменная автоматически игнорируется.

Переменные объекта, tbl_dfвозвращаемые, <u>diagnose_numeric()</u>следующие.

- min: минимальное значение
- Q1: 1/4 квартиля, 25-й процентиль
- mean: среднее арифметическое
- median: медиана, 50-й процентиль

<u>diagnose_category()</u> диагностирует категориальные (факторные, упорядоченные, символьные) переменные набора данных. Использование аналогично <u>diagnose()</u>, но возвращает больше диагностической информации.

функции diagnose_outlier() комплексного эксплораторного анализа позволяет производить диагностику выбросов

Спасибо за внимание!