КАЗАНСКИЙ ГОСУДАРСТВЕННЫЙ МЕДИЦИНСКИЙ УНИВЕРСИТЕТ

Современные представления об эволюции нервной системы

Лекция 1

для студентов 1 курса, обучающихся по специальности «Лечебное дело» (ИОП)

Лектор Доцент кафедры медицинской биологии и генетики, к.б.н. Кошпаева Е.С.

Кафедра медицинской биологии и генетики

План

Состав нервной ткани

Нейроны

Восприятие сигнала, выработка нервного импульса и его передача

Макроглия

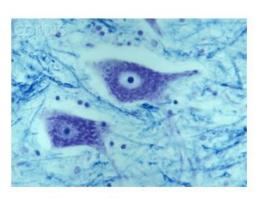
Эпиндимоциты Астроциты Олигонендроциты

Опорная, трофическая, секреторная и защитная функции Нейроглия

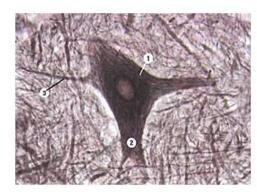
Глия ЦНС

Микроглия

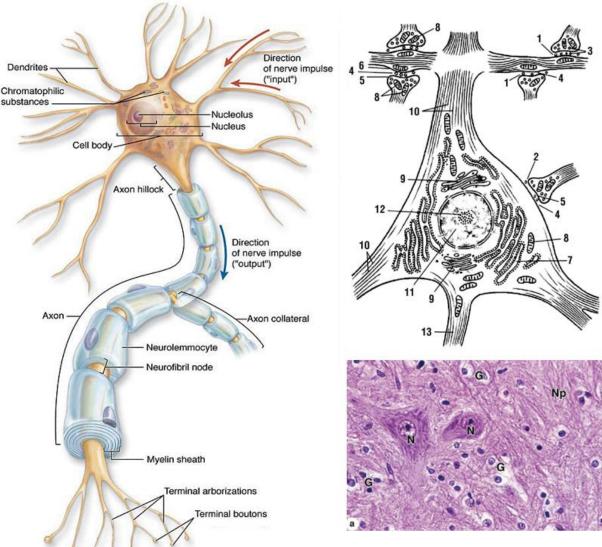
Глиальные макрофаги **макрофаги**


Защита от инфекций (фагоцитоз), удаление разрушенных компонентов

Глия ПНС

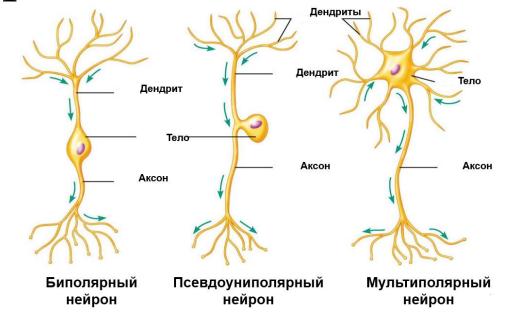

Нейролеммоциты Клетки-сателлиты

Участие в миелинизации, опорная, поддержка и регенерации нейронов, защитная (участие в иммунных реакциях

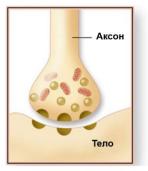

Строение нейрона

Базофильное вещество

Нейрофибриллы

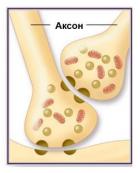


Морфологическая классификация


нейронов

Факторы, влияющие на формирование нервных клеток и синаптических связей:

- происхождение клеток;
- индукционные трофические
 взаимодействия между клетками;
- метки, при помощи которых осуществляется миграция и рост аксонов;
- специфические маркеры, благодаря которым клетки узнают друг друга,
- постоянная реорганизация связей в зависимости от активности клетки


Виды синапсов по локализации терминалей аксона

Аксодендритный

Аксоаксональный

Происхождение нервной системы. Аксиомы

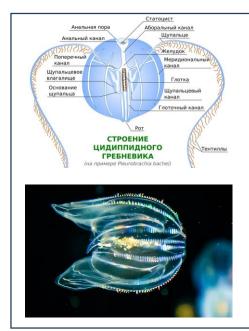
- ✓ В филогенетическом ряду существуют организмы разной степени сложности и их можно разделить на две группы: <u>беспозвоночные и хордовые животные</u>.
- ✓ Нервная система практически всех многоклеточных развивается <u>из эктодермы</u>, \rightarrow нервные клетки как беспозвоночных, так и хордовых устроены принципиально одинаково \rightarrow общее происхождение живых организмов.
- ✓ С усложнением строения животного заметно изменяется структура нервной системы, но предыдущие образования не исчезают.
- ✓ В нервной системе высших животных сохраняются <u>сетевидная</u>, цепочечная <u>и</u> <u>ядерная структуры</u>, которые были характерны для предковых ступеней развития.

Теории эволюционного происхождения нервной системы.

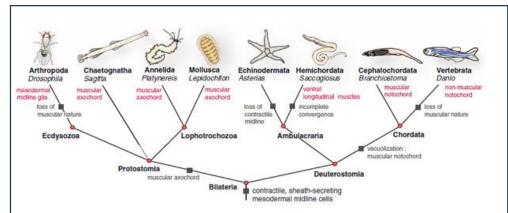
Ранние теории эволюционного происхождения нервной системы (конец XIX века) → три стадии:

- 1) развитие ненервных «независимых эффекторов», таких как <u>мышечные</u> клетки
- **2)** появление ненервных рецепторов, реагирующих на определенные модальности рецепторно-эффекторного механизма;
- 3) образование «протонейрона», из которого произошли примитивные нервы и <u>ганглии</u>

Николаус Клейненберг → описал «нейромышечные» клетки миоциты и предположил, что они с нейронами имеют общее происхождение


Оскар и Рихард Гертвиг, выдвинули теорию о том, что каждый компонент нейрона — тело и отростки — возникли как отдельные типы эпителиальных клеток

!!! Полногеномное секвенирование представителей пяти базальных таксонов многоклеточных организмов: гребневиков, губок, пластинчатых, стрекающих и двустороннесимметричных, дало новые факты в пользу предположения о полигении или множественном происхождении нейронов в эволюции


Теории эволюционного происхождения нервной

системы.

Наличие нейронов подтверждено только у трех из этих таксонов: нейроны обнаружены у стрекающих, билатерий и гребневиков.

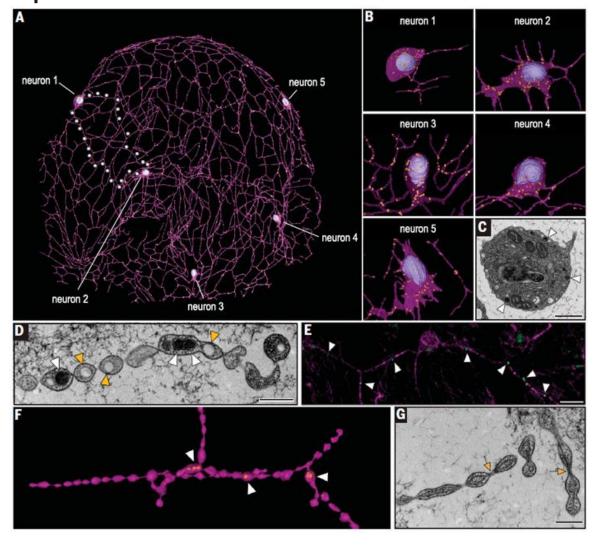
нейроны гребневиков, расположены в мезоглее и эктодерме, отличаются друг от друга по траскриптому и морфологическим особенностям формирования сети, → предположение о двух нервных системах гребневиков с предположительно независимым происхождением из разных клеток-предшественников

Нервная система билатерий на уровне транскриптома и морфологии отличается от нервных систем гребневиков и стрекающих, что позволило предполагать независимость происхождения и эволюции нейронов в этих группах.

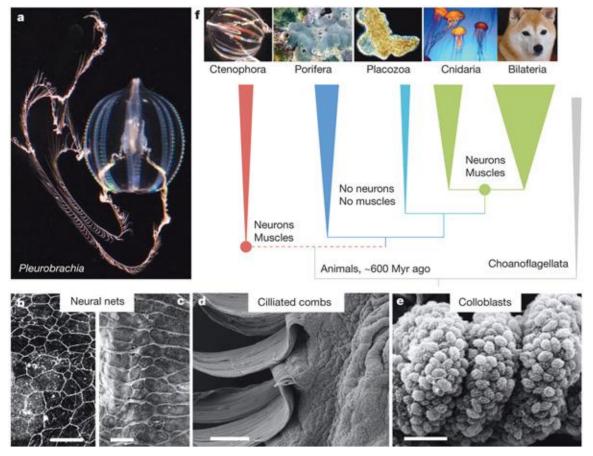
!!! Фенотипическое сходство нейронов у разных групп рассматривается как пример конвергенции; сходство могло развиться под действием движущего отбора при сходных условиях окружающей среды.

Теории эволюционного происхождения нервной системы.

Камилло Гольджи, → нейроны слиты друг с другом в единую сеть (синцитий)


Сантьяго Рамон-и-Кахаль, → нейроны — это отдельные клетки, передающие друг другу сигналы в специальных контактных зонах (синапсах).

Один из главных вопросов в истории нейробиологии


Ультраструктура субэпителиальной нервной сети (СНС)

гребневика.

A — трехмерная реконструкция участка СНС с пятью сомами (телами нейронов). Белыми *точками* показаны (для примера) два связующих пути между двумя сомами, на протяжении которых клеточные мембраны нигде не прерываются. В отдельные нейроны СНС; голубым цветом выделены ядра, оранжевым — мембранные пузырьки, содержащие нейропептиды. С — тело нейрона, белыми стрелками отмечены крупные мембранные пузырьки. **D**–**F** — ультраструктура отростков (нейритов). Многие нейриты имеют «бусообразную» морфологию с многочисленными расширениями и перетяжками. Стрелками отмечены пузырьки с нейропептидами. **G** стрелками отмечены тубулиновые микротрубочки, проходящие сквозь перетяжку из одного расширения в другое. Изображение из обсуждаемой статьи (Sallu et al., 2023. High-Pressure Freezing Followed by reeze Substitution: An Optimal Electron Microscop Technique to Study Golgi Apparatus Organization Membrane Trafficking).

Гипотеза о двукратном независимом появлении нервной системы. Доказательства

Положение гребневиков (Ctenophora) на эволюционном дереве животных (**f**) и их важнейшие эволюционные инновации: нервные сплетения (**b**, **c**), плавательные гребни из ресничек (**d**), коллобласты — расположенные на щупальцах клетки, выделяющие клей (**e**). Длины масштабных линеек: **b** — 60 мкм, **c** и **e** — 20 мкм, **d** — 100 мкм. Изображение из статьи в *Nature*

https://elementy.ru/novosti nauki/432257/Gipoteza o dvukratnom poyavlenii nervnoy sistemy poluchila novye podtverzhdeniya

Особенности НС гребневиков

- В качестве нейротрансмиттеров <u>не используются:</u> серотонин, ацетилхолин, адреналин, норадреналин, глицин, дофамин, гистамин, октопамин.
- Единственный нейротрансмиттер <u>глутамат</u> (используется в нервно-мышечных синапсах)
- <u>Нет ионотропных рецепторов</u> для всех нейротрансмиттеров, кроме глутамата
- Есть ГАМК (гамма-аминомасляная кислота), но она не является тормозным нейротрансмиттером).
- Для передачи сигналов используются нейропептиды, которых нет у др.животных
- В работе электрических синапсов играют белки <u>иннексины</u>
- Несколько генов, отвечающих за развитие НС (например, <u>elav</u> и <u>musashi</u>), у гребневиков экспрессируются не в нейронах, а в других типах клеток.

Возникновение нервной системы

Х.С. Коштоянцем высказана идея:

хорошо развитая система химической межклеточной сигнализации с готовыми системами рецепции и кальцийзависимой секреции

возникла задолго до формирования нейронов в эволюции

Преадаптивный базис

НЕРВНАЯ СИСТЕМА

!!! Нейротрансмиттеры унаследованы от донервных форм межклеточной сигнализации

Предполагается: нейроны в эволюции сформировались из секреторных клеток

Возникновение нервной системы

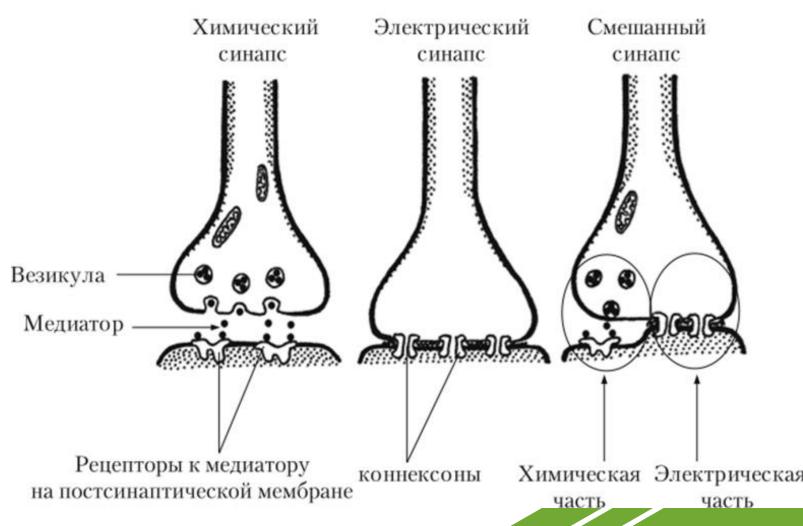
Первые синаптические контакты, позволяющие объединить клетки в единую секретирующую сеть возникли в эволюции в связи с необходимостью синхронизации, координации и повышения эффективности секреции сенсорно-нейросекреторными клетками.

Онтофилогенетические доказательства:

в онтогенезе первичноротых самые первые нейроны, называемые пионерными (pioneer neurons), представлены сенсорными клетками с несинаптической секрецией

<u>Факторы, которые стали необходимым условием для появления настоящих нейронов и</u> <u>синаптической секреции</u>

специализация эндоплазматического ретикулума в направлении увеличения секреторной способности клетки и увеличение внутриклеточных мембранных структур


Онтофилогенетические доказательства:

при нейрогенезе мембранные синаптические пузырьки присутствуют в растущих аксонах и их окончаниях еще до того, как сформируются настоящие синапсы

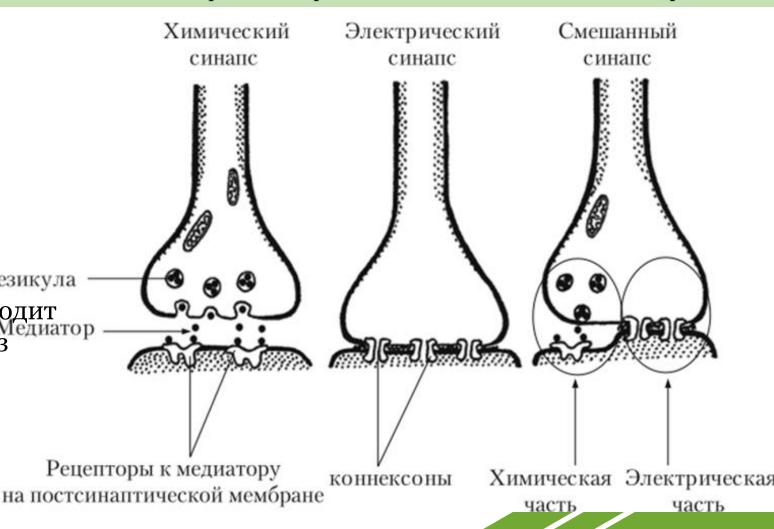
Классификация межнейронных контактов (основана на способе проведения импульса от одного нейрона к другому):

- 1) электрические,
- 2) химические
- 3) смешанные синапсы

область контакта между двумя нейронами называют **синапсом**.

Везикула

Электрические синапсы. Электрические синапсы в нервной системе млекопитающих

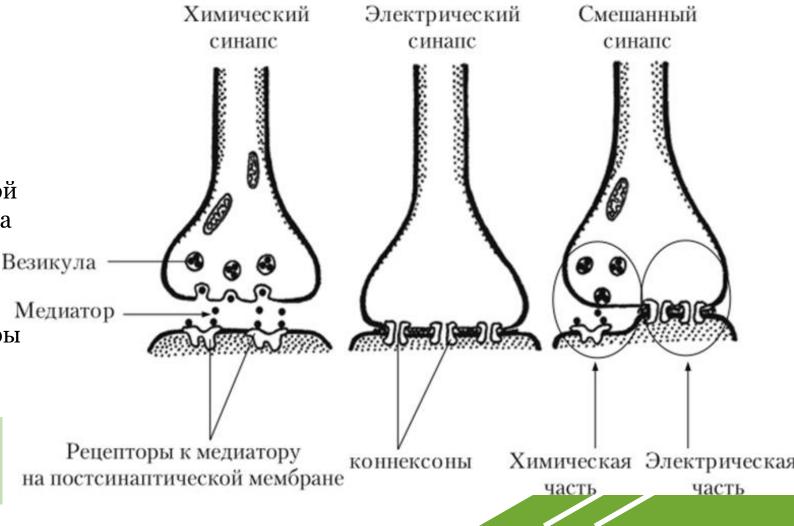

встречаются редко.

образованы щелевидными контактами (нексусами) между дендритами или сомами соприкасающихся нейронов,

соединяются с помощью цитоплазматических каналов диаметром 1,5 нм.

процесс передачи сигнала происходит без синаптической задержки и без участия медиаторов.

Пример: нейроны дыхательного центра продолговатого мозга, которые во время вдоха синхронно генерируют импульсы

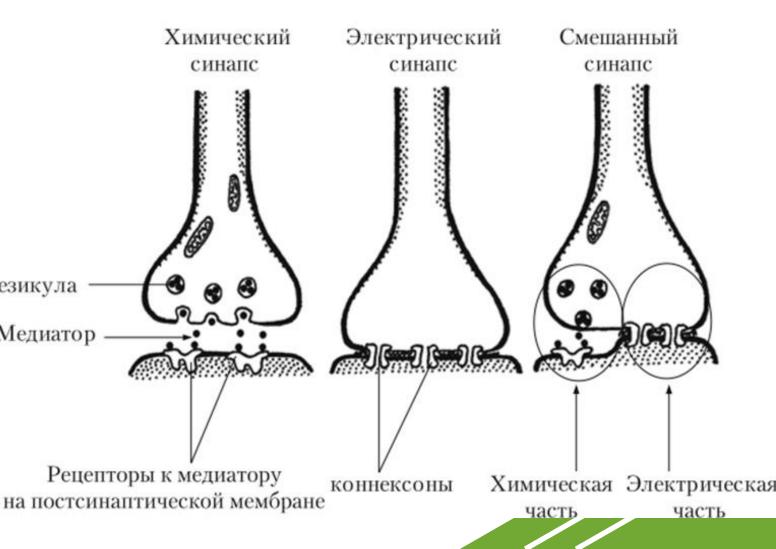


С эволюционной точки зрения электрические синапсы считаются наиболее древними.

Химические синапсы. Функционирование таких синапсов зависит от высвобождения медиаторов.

- Классический химический синапс представлен пресинаптической мембраной, синаптической щелью и постсинаптической мембраной.
- Наличие синаптической щели является препятствием для свободной и бесконтрольной передачи импульса по нервным клеткам:
- для осуществления передачи мередачи возбуждения требуются трансмиттеры нейромедиаторы

Химический способ передачи импульсов в ходе эволюции возник позже и является более прогрессивным.


Смешанные синапсы - присутствуют оба способа проведения импульса.

Пресинаптический потенциал действия создает ток, который деполяризует постсинаптическую мембрану и стимулирует высвобождение медиатрора.

Химическая передача является усиливающим механизмом

Возбуждающим медиатором для Везикула – большинства смешанных синапсов Медиатор является глутамат.

Химический способ передачи импульсов в ходе эволюции возник позже и является более прогрессивным.

Этапы эволюции синапсов

- **1.Простейшие нейронные сети**: В ранних формах жизни нейронные сети были простыми и использовали один тип нейротрансмиттера. (передача базовых сигналов, необходимые для выживания).
- **2.Появление многокомпонентных синапсов**: усложнение организмов и увеличение числа нейронов в их системах → необходимость в сложных механизмах передачи сигналов → появление синапсов, которые одновременно используют несколько нейротрансмиттеров → передача сложных и разнообразных сигналов.
- **3.Функциональная специализация**: Смешанные синапсы позволили нейронным сетям развивать функциональную специализацию: одни нейроны могли отвечать за возбуждение, а другие за торможение → баланс в нейронной активности → быстрая адаптироваться к изменениям в окружающей среде.
- **4.Эволюция рецепторов и сигнальных путей**: увеличение разнообразия нейротрансмиттеров и рецепторов → усложнение смешанных синапсов → эффективное взаимодействие нейронов → развитие когнитивных функций, таких как память и обучение.
- **5.Сложные нейронные сети**: У млекопитающих смешанные синапсы играют ключевую роль в сложных нейронных сетях, отвечающих за высшие психические функции. Это позволяет организму обрабатывать и интегрировать информацию из различных источников

Происхождение нервной системы. Гипотезы

- 1. Гипотеза одноклеточных организмов
- 2. Теория клеточной специализации
- 3. Двухслойная гипотеза
- 4.Гипотеза нервного пучка
- 5. Гипотеза симметрии

1.Гипотеза одноклеточных организмов

Согласно этой гипотезе, нервная система возникла у многоклеточных организмов из клеток, которые начали взаимодействовать друг с другом.

Структуры, подобные нейронам, вероятно, появились у простейших организмов, таких как амебы, в ответ на необходимость обработки информации об окружающей среде.

Основные идеи гипотезы

1.Происхождение из одноклеточных организмов:

Считается, что многоклеточные организмы произошли от одноклеточных предков. В процессе эволюции некоторые одноклеточные организмы начали образовывать колонии, что привело к более сложным формам жизни. В этих колониях клетки начали взаимодействовать и координировать свои действия.

2.Клеточная коммуникация:

Важным аспектом этой гипотезы является то, что клетки начали обмениваться сигналами, что позволило им координировать свои функции. Это взаимодействие могло включать химические сигналы, такие как гормоны и нейротрансмиттеры, которые способствовали передаче информации между клетками.

2. Теория клеточной специализации

Эта теория предполагает, что с возникновением многоклеточности появилась необходимость в специализированных клетках. Клетки стали специализированными для выполнения различных функций, и некоторые из этих клеток стали нервными. Это было связано с необходимостью быстрой передачи информации для обеспечения реакции организма на изменения в окружающей среде.

Основные идеи гипотезы

1.Специализация клеток:

По мере развития колоний одноклеточных организмов, клетки начали специализироваться на определенных функциях. Некоторые клетки могли стать чувствительными к внешним стимулам (например, свету или химическим веществам), в то время как другие могли отвечать за движение или защиту.

2. Формирование нервных клеток:

В результате взаимодействия и специализации клеток могли возникать предшественники нейронов. Эти специализированные клетки начали объединяться в группы, образуя простые нервные структуры, которые могли обрабатывать информацию и реагировать на раздражители.

3. Двухслойная гипотеза

Некоторые ученые выдвигают теорию о том, что нервная система могла возникнуть из двух слоев клеток – экзодермы и энтодермы, которые выполняли разные функции.

Гипотеза <u>опирается на анатомические данные</u> о структуре нервных систем у различных групп животных.

Основные положения теории

1. Экзодерма и энтодерма:

Экзодерма – образует защитный барьер и может участвовать в восприятии окружающей среды. У многих простейших многоклеточных организмов экзодерма играет ключевую роль в защите и коммуникации.

Энтодерма – формирует пищеварительный тракт и другие внутренние органы. Этот слой также может участвовать в обмене веществ и секреции.

- 2. Клеточная коммуникация
- 3. Специализация клеток
- 4. Возникновение нервных структур по мере усложнения взаимодействий между клетками

4. Гипотеза нервного пучка

Согласно этой гипотезе, нервная система образовалась в результате конвергенции и укладки нервных клеток в пучки.

Основные идеи гипотезы нервного пучка

1.Происхождение нервных клеток:

Гипотеза предполагает, что нервные клетки (нейроны) первоначально возникли в результате специализации клеток, которые отвечали за восприятие и передачу сигналов. <u>Эти клетки могли эволюционировать из более простых форм, таких как эпителиальные клетки,</u> которые реагировали на химические и физические стимулы.

2. Формирование нервных пучков:

По мере развития многоклеточных организмов, специализированные клетки начали объединяться в группы или пучки, что позволяло им более эффективно передавать сигналы. Эти пучки могли изначально функционировать как простые структуры для обработки информации.

4. Гипотеза нервного пучка

Основные идеи гипотезы нервного пучка

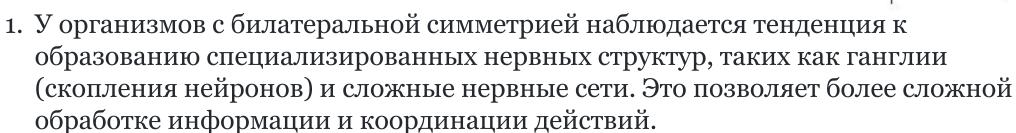
3. Упрощение и усложнение:

В более примитивных организмах, таких как губки и кишечнополостные, нервные клетки могут располагаться в виде диффузной сети. Однако у более сложных организмов, таких как черви и позвоночные, нервные клетки организованы в более сложные структуры, такие как ганглии и спинной мозг.

Эволюционные преимущества:

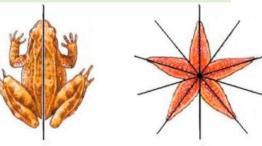
Образование нервных пучков могло предоставить организму эволюционные преимущества, позволяя ему быстрее реагировать на внешние раздражители, координировать движения и адаптироваться к изменениям в окружающей среде.

Сравнительная анатомия:


Гипотеза нервного пучка поддерживается данными сравнительной анатомии. У многих животных, включая беспозвоночных и позвоночных, можно наблюдать аналогичные структуры нервной системы, которые указывают на общие эволюционные корни.

5. Гипотеза симметрии

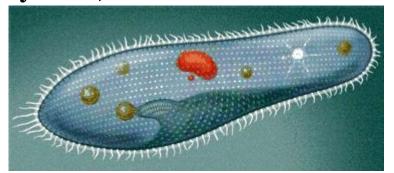
Предполагается, что симметрия тела могла сыграть важную роль в развитии нервной системы.

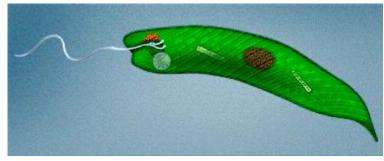

1.Основные идеи гипотезы

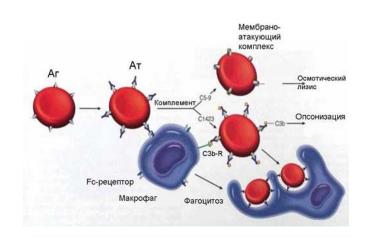
Развитие нервных структур:

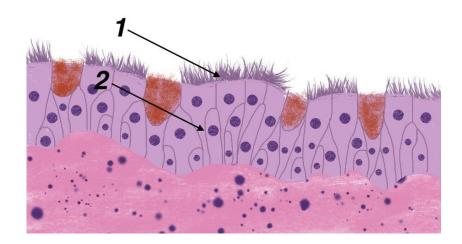
2. У радиально симметричных организмов нервные структуры, как правило, менее специализированы и более диффузны, что ограничивает их способности к сложной обработке информации.

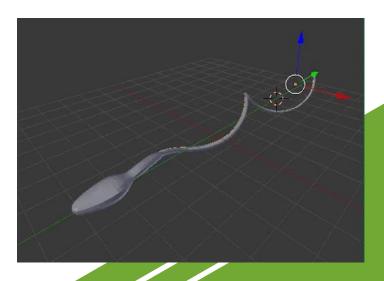
Эволюционные преимущества билатеральной симметрии, централизация нервных клеток, развитие ганглиев, нервных сетей



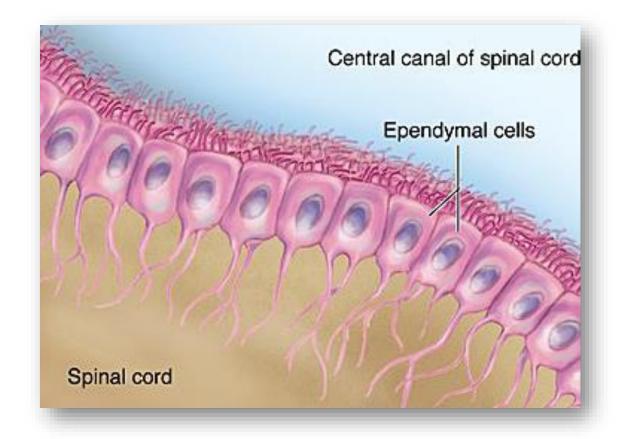

Эволюция НС связана с движением

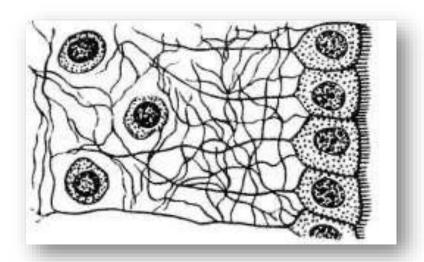

У одноклеточных организмов:


Появляются структуры, способствующие согласованному движению органоидов перемещения (ресничек) - специфические фибриллы, способные проводить возбуждение лучше, чем гиалоплазма.

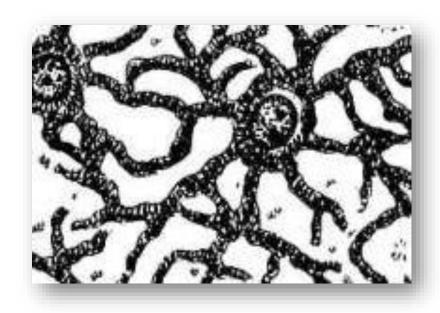




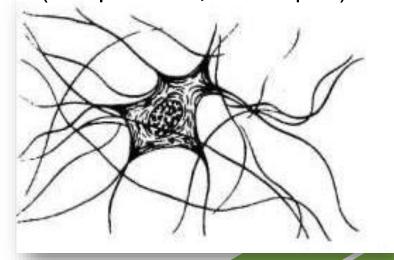




Эпендимоциты



- Клетки призматической формы, имеют *реснички*
- Выстилают центральный канал спинного мозга и желудочки головного мозга
- *Основная функция* секреция цереброспинальной жидкости


Астроциты

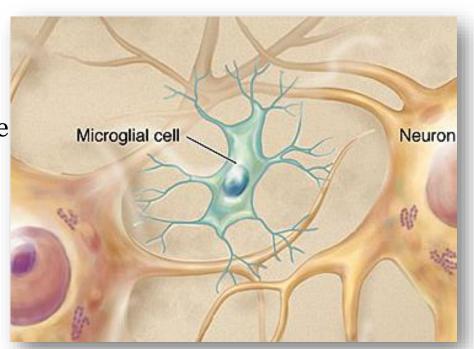
Функции астроцитов:

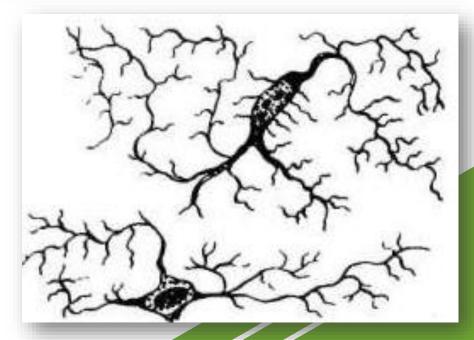
- Опорная (формирование каркаса для нервных клеток и волокон в ЦНС; обеспечение оптимального микроокружения для нейронов)
- Разграничительная (участие в образовании гематоэнцефалического барьера)
- Метаболическая и регуляторная (поддержание определенных концентраций калия в микроокружении нейронов; участие в метаболизме медиаторов)
- Защитная (фагоцитарная активность и участие в репаративных процессах)

Протоплазматические (в сером веществе ЦНС)

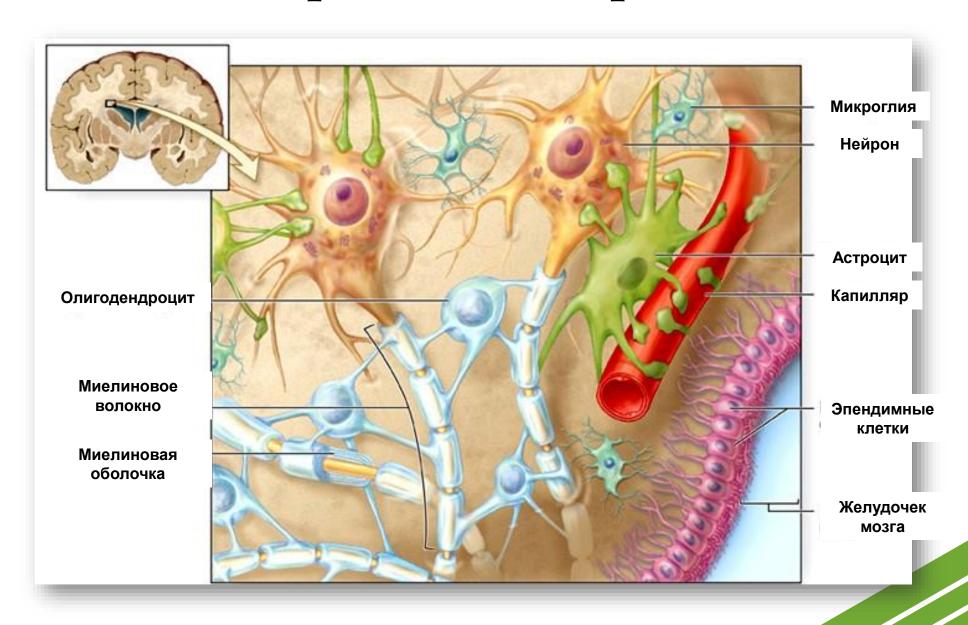
Волокнистые (в белом веществе ЦНС)

Микроглия


• Клетки микроглии представляют собой фагоцитирующие клетки, происходящие из стволовой клетки крови


Основная функция

защита от инфекций и удаление продуктов разрушения нервной ткани

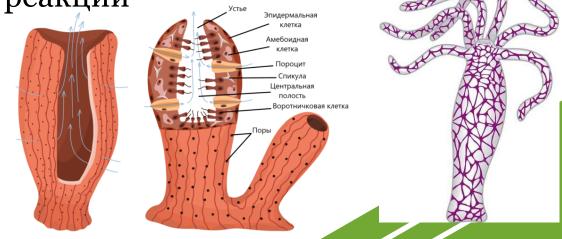

• **Амебоидная микроглия** — временная форма микроглии в развивающейся ЦНС

- Покоящаяся микроглия обнаруживается в полностью сформированной ЦНС и обладает слабой фагоцитарной активностью
- Реактивная микроглия появляется после травмы в любой области мозга

Взаимосвязь нейронов и нейроглии

Предпосылки для появления и эволюции НС

!!! Возникновение в эволюции животных нервной системы связано с появлением многоклеточности.


Это связано с необходимостью

✓ регулировать согласованную деятельность различных клеток многоклеточного организма

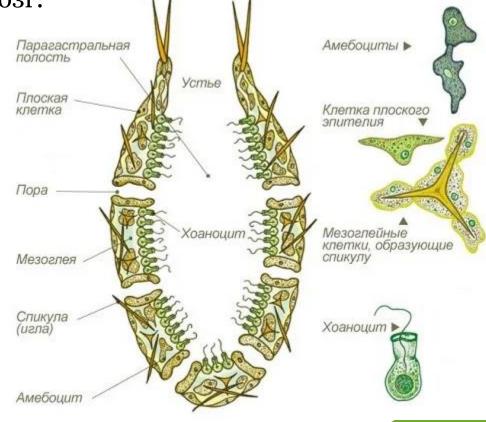
✓ обеспечивать быстрое реагирование на воздействие факторов

внешней среды в виде двигательной реакции

Появление нервной системы предоставляет возможность передавать информацию быстро и на большие расстояния и дает организму преимущества в адаптации к окружающей среде.

Направления эволюционного развития НС

- **1) Централизация** нервных клеток, увеличение их концентрации в определенном месте;
- **2)Цефализация** появление головных ганглиев, головного мозга;
- **3)Кортикализация -** увеличение числа нейронов и их синаптических связей.

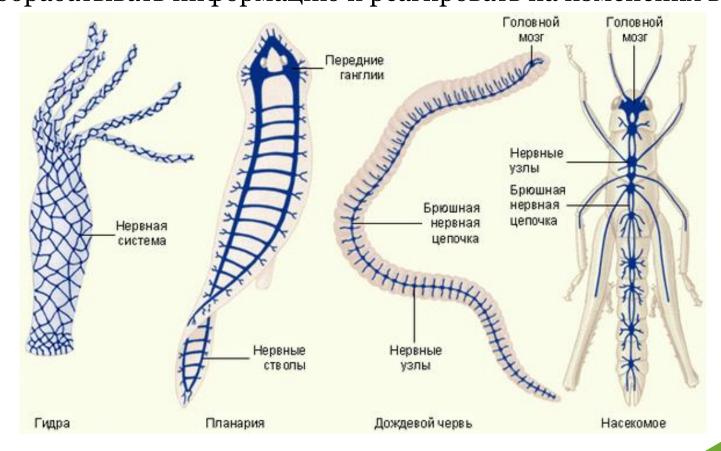

1. Централизация нервных клеток

процесс, в ходе которого нервные клетки (нейроны) начинают группироваться в

специализированные структуры, такие как ганглии и мозг.

• Простейшие организмы: У самых простых форм жизни, таких как губки, клетки, которые могут выполнять некоторые функции, схожие с нервнымираспределены по всему телу и не образуют централизованных структур.

• Это обеспечивает базовую реакцию на раздражители, но не позволяет организму эффективно обрабатывать информацию.



амебоциты и пороциты, которые могут реагировать на изменения в окружающей среде и участвовать в процессах, таких как фильтрация воды и питание.

1. Централизация нервных клеток

• **Беспозвоночные**: С развитием многоклеточных организмов, таких как плоские черви, наблюдается формирование нервных ганглиев — скоплений нейронов, которые могут координировать движения и реакции на раздражители. Это позволяет организму более эффективно обрабатывать информацию и реагировать на изменения в окружающей

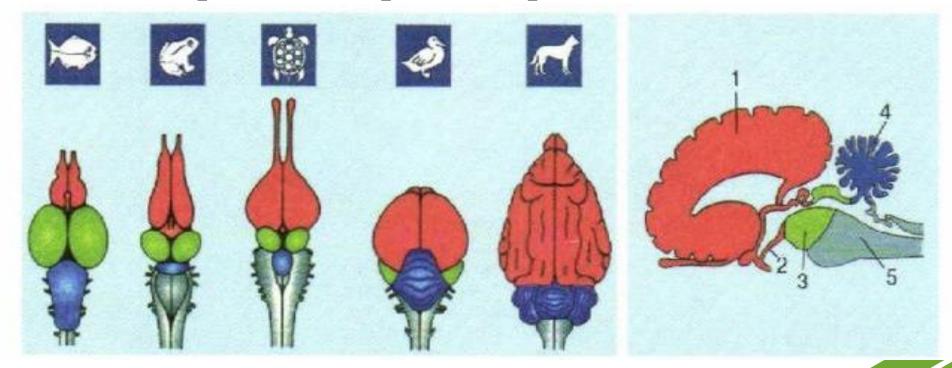
среде.

1. Централизация нервных клеток

- **Позвоночные**: У позвоночных животных нервная система становится еще более централизованной. **НС представлена нервной трубкой**
- Мозг и спинной мозг образуют центральную нервную систему (ЦНС), которая управляет всеми функциями организма и обеспечивает более сложное поведение.

2. Цефализация

Цефализация — это процесс, при котором нервные структуры и сенсорные органы концентрируются в передней части тела, <u>образуя "голову".</u>

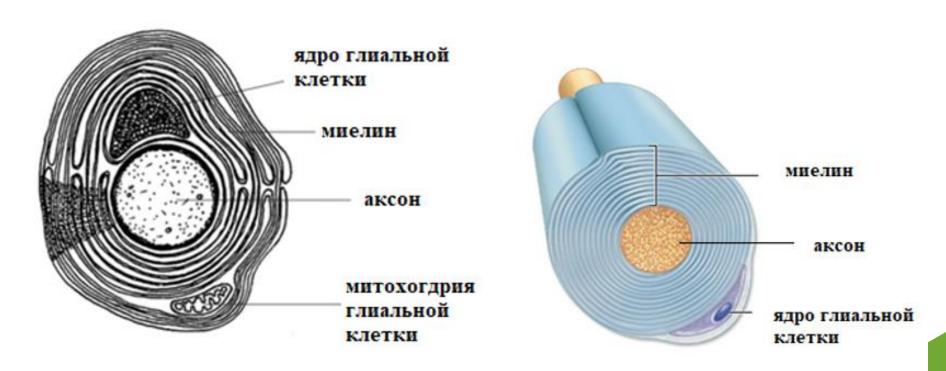

• Функциональные преимущества: Этот процесс позволяет организму лучше воспринимать и обрабатывать информацию из окружающей среды.

- Сосредоточение сенсорных органов (глаз, ушей, обонятельных рецепторов) в одной области улучшает координацию и реакцию на раздражители.
- **Беспозвоночные**: сложные головные структуры содержат не только сенсорные органы, но и нервные ганглии, что позволяет улучшить координацию движений и поведение (моллюски, членистоногие).

2. Цефализация

- Позвоночные: У позвоночных животных цефализация достигает своего пика. Головной мозг становится основным центром обработки информации, а его сложные структуры (такие как кора головного мозга) отвечают за высокие когнитивные функции, такие как обучение, память и социальное взаимодействие.
- **.** НС эволюционировала в направлении развития головного мозга

3. Кортикализация


Кортикализация относится к увеличению числа нейронов и их синаптических связей, что приводит к более сложной и эффективной обработке информации.

- **Развитие коры головного мозга**: У млекопитающих наблюдается значительное увеличение объема коры головного мозга, что связано с увеличением числа нейронов и их взаимосвязей. Это позволяет млекопитающим выполнять более сложные задачи, такие как планирование, принятие решений и социальное взаимодействие.
- Синаптическая пластичность: Увеличение числа синаптических связей между нейронами обеспечивает большую гибкость и адаптивность нервной системы. Это позволяет организму обучаться на основе опыта и адаптироваться к новым условиям.
- Социальное поведение: <u>Кортикализация также связана с развитием социальных навыков и сложного поведения</u>. У животных с высокоразвитыми когнитивными функциями наблюдается более сложная социальная структура и взаимодействие.

Способы повышения скорости распространения нервного импульса у беспозвоночных и позвоночных

1) увеличение диаметра аксона (напр. Гигантские аксоны у кальмара – слияние нескольких аксонов)

2) миелинизация

А - Поперечный разрез через аксон креветки; Б – поперечный разрез аксона позвоночных

Этапы развития нервной системы в эволюции животных

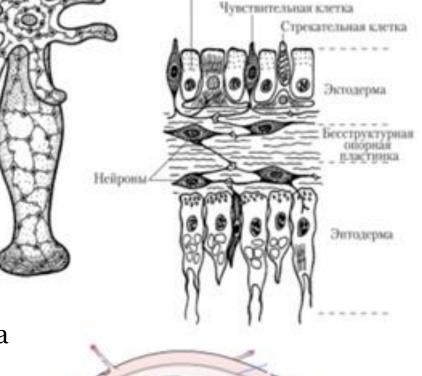
В процессе филогенеза у животных различных уровней организации сформировались четыре основных типа нервной системы:

- 1) Диффузная (сетчатая),
- 2) стволовая (ортогон),
- 3) узловая (ганглионарная)
- 4) трубчатая

Диффузная (сетчатая) нервная система

Примитивность строения:

• отсутствие длинных проводящих путей, разделения на центральный и периферический отделы; специализации нейронов и их отростков.


Примитивность функционирования:

• возбуждение, возникающее в определенном участке нервной системы, распространяется и охватывает всю сеть, и раздражение одного из участков тела приводит к генерализованной общей реакции;

• сеть медленно проводит раздражение от нейрона к нейрону, а реакции организма имеют неточный, расплывчатый, однотипный характер

Адаптивные плюсы:

множество повторяющихся связей между большим количеством нейронов обеспечивает их взаимозаменяемость и тем самым большую надежность функционирования



!!! При смене уровня развития на более высокий в нем сохраняются древние формы организации, если они могут выполнять какую-то более частную функцию.

у хордовых животных перистальтическая моторика кишечного тракта подобна моторике гидры, и здесь сохраняются **участки с диффузной НС** (интрамуральная НС пищеварительного тракта).

Перистальтика кишечника продолжается даже в условиях его **полной внешней денервации** за счет проведения возбуждения по внутренним сетям и спонтанной нейронной активности участков пейсмекерных клеток на гладких мышцах (в частности, в желудке и двенадцатиперстной кишке).

ЭНС (энтеральная нервная система) состоит из **сети нейронов**, распределенных в двух слоях – межмышечное (Ауэрбаха) и подслизистое (Мейснера) сплетение

Стволовая нервная система (ортогон)

сформировалась в эволюции за счет концентрации отдельных нервных клеток в структуры типа парных мозговых ганглиев или **окологлоточных нервных колец**, от которых отходят **нервные стволы**, соединенные **комиссурами**

Эволюция ортогона (правильной решетки) идет в сторону <u>уменьшения числа стволов</u> при одновременном <u>смещении</u> все большего числа <u>клеток в передний конец тела</u>, где начинают формироваться ганглии - прототип «мозга» - **цефализация**.

Головной ганглий — «мозг» - в эволюции образуется либо за счет утолщения одного из передних колец ортогона (ортогонный тип «мозга»), либо за счет скопления нервных клеток в переднем конце тела (эндонный тип «мозга»).

нервный узел

Ганглионарная (узловая) нервная система

сформировалась в процессе эволюции как результат **объединения отдельных нейронов в нервные узлы (ганглии),** которые могут <u>специализироваться на иннервации как целых частей тела, так и отдельных органов.</u>

Узлы соединяются между собой отростками нервных клеток, также появляется брюшная нервная цепочка.

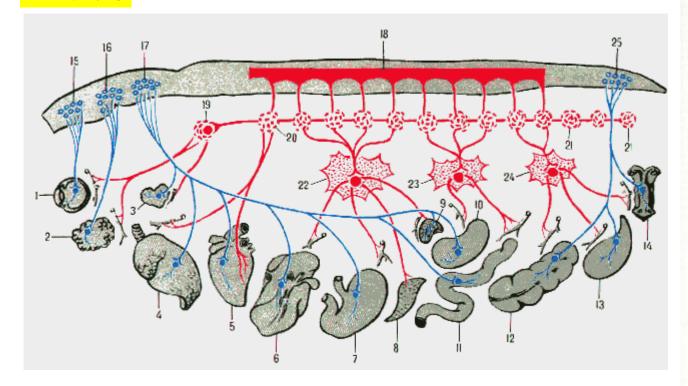
Усложнение:

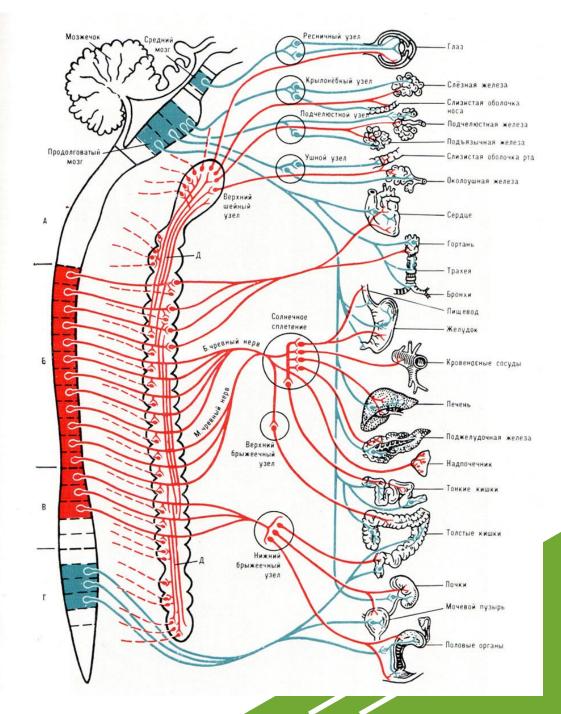
1) Появляются специализированные органы чувств

 Специализация нейронов (чувствительные, вставочные, двигательные нейроны)

3) В ответную реакцию вовлекаются только нервные клетки данного сегмента

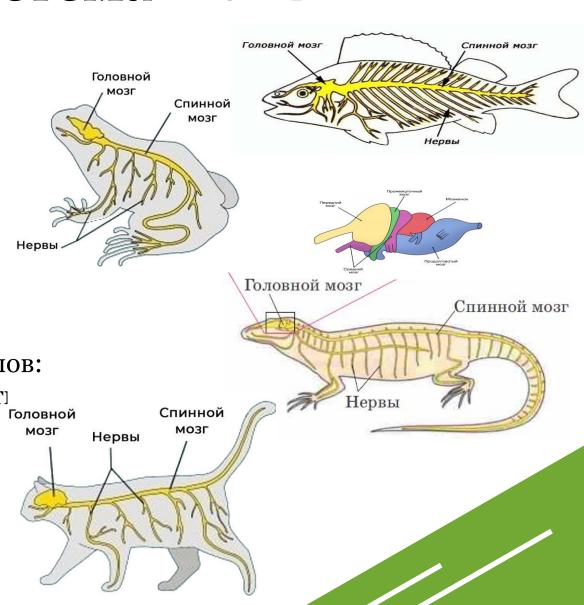
Нервный импульс проводится по рефлекторным дугам (→ обеспечивает быстроту и точность реакции на воздействие)


Минусы: повреждение одного узла → нарушение функций всего организма



Узловая нервная система насекомых

в типе хордовых наблюдается посегментное (метамерное) расположение некоторых органов, более выраженное у низших хордовых, но в какой-то мере сохраняющееся даже у млекопитающих (позвоночник)


У хардавых живариных имеюриса элементы ганглианарной НС харахраерной дла хальцартых и иленистоногих в виде сенсорных и вегетативных ганглиев.

Трубчатая нервная система

- отмечается высшая степень концентрации нервных клеток,
- характерна полная и четкая специализация нейронов,
- сегментарный тип строения, ответная реакция происходит в рамках одного сегмента
- включает в себя черты диффузного и узлового типов, демонстрирует только положительные характеристики эволюционно более ранних типов: высокую надёжность диффузного типа, точност локальность быстроту организации реакций мо узлового типа.
- Появление связано с развитием внутреннего скелета, нового типа двигательного аппарата (суставные конечности)

Биогенетический закон Геккеля-Мюллера в эволюции НС позвоночных

1. Структурная эволюция НС:

- **Простые организмы:** На ранних стадиях эволюции у простых многоклеточных организмов нервная система была представлена простыми нервными сетями.
- **Позвоночные:** У более сложных позвоночных, таких как рыбы, амфибии, рептилии, птицы и млекопитающие, наблюдается постепенное усложнение структуры и функции HC, что отражает их эволюционное развитие.

2. Развитие головного мозга (цефализация):

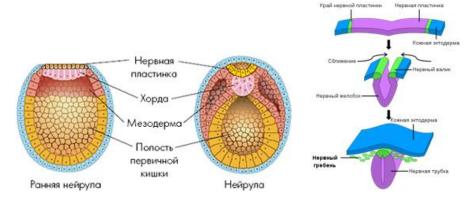
- Рыбы: У рыб головной мозг мал и состоит из простых структур.
- **Амфибии и рептилии:** У этих животных наблюдается увеличение размера и сложности головного мозга, особенно коры.
- **Млекопитающие:** У млекопитающих, особенно у приматов, наблюдается значительное развитие коры головного мозга, что связано с высокими когнитивными функциями.

Биогенетический закон Геккеля-Мюллера в эволюции НС позвоночных

3. Функциональная эволюция:

- **Рефлексы:** На ранних стадиях эволюции НС рефлексы были основным механизмом реакции на раздражители. С развитием мозга рефлексы стали более сложными и многоступенчатыми.
- **Когнитивные функции:** Эволюция НС привела к появлению сложных когнитивных функций, таких как обучение, память и социальное взаимодействие.

4. Онтогенез и филогенез:

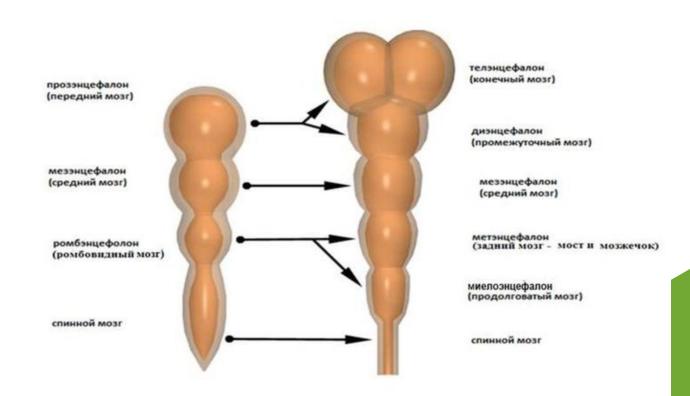

• **Сравнительное развитие:** При изучении развития НС у различных позвоночных можно заметить, что эмбрионы разных видов имеют сходные структуры на ранних стадиях. Например, у всех позвоночных в раннем эмбриональном развитии можно наблюдать наличие нервной трубки, которая в дальнейшем дифференцируется в различные отделы мозга и спинного мозга.

Рекапитуляции при закладке нервной системы у хордовых

Рекапитуляция — это концепция, согласно которой стадии онтогенеза (развития) организма повторяют (или «рекатапитулируют») важные этапы его филогенеза (эволюционного развития).

1. Общие черты в эмбриональном развитии

- •Нервная трубка: На ранних стадиях эмбрионального развития у всех хордовых формируется нервная трубка, которая является прообразом центральной нервной системы (ЦНС). Этот этап напоминает эволюционные процессы, когда у общих предков хордовых уже существовала примитивная нервная система, состоящая из нервного ствола.
- •Стадии развития: На ранних эмбриональных стадиях различные группы хордовых (рыбы, амфибии, рептилии, птицы, млекопитающие) имеют схожие морфологические структуры, такие как зачатки нервной трубки и зачатки мозга. Эти структуры постепенно развиваются и усложняются, что отражает эволюционные изменения.



Рекапитуляции при закладке нервной системы у хордовых

Рекапитуляция — это концепция, согласно которой стадии онтогенеза (развития) организма повторяют (или «рекатапитулируют») важные этапы его филогенеза (эволюционного развития).

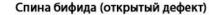
2. Появление и развитие отделов мозга

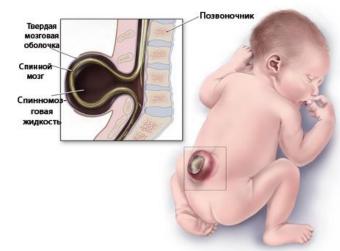
•Мозговые пузырьки: На этапе формирования нервной трубки у хордовых образуются три основных мозговых пузыря (передний, средний и задний мозг). Эти структуры являются предшественниками более сложных отделов мозга у взрослых особей и повторяют этапы филогенеза, где у предков хордовых также существовали простые структуры мозга.

1. Роль генов в развитии нервной системы

Гены, контролирующие развитие нервной системы, играют важную роль на всех стадиях эмбриогенеза. Они регулируют процессы, такие как:

- Пролиферация клеток: Определяют скорость деления клеток, что важно для формирования нервной трубки и других структур.
- **Дифференцировка**: Указывают, какие клетки должны стать нейронами, а какие глиальными клетками.
- Миграция клеток: Контролируют перемещение нейронов к местам их назначения, что критически важно для правильного формирования нейронных сетей.


2. Нарушение экспрессии генов


Нарушения в экспрессии генов могут быть вызваны различными факторами, включая:

- Генетические мутации: Изменения в последовательностях ДНК могут приводить к аномалиям в структуре или функции белков, участвующих в развитии НС.
- Эпигенетические изменения: Модификации, не затрагивающие саму ДНК, могут влиять на экспрессию генов, например, метилирование или модификации гистонов.
- Влияние внешних факторов: Тератогены (например, алкоголь, наркотики, инфекции) могут нарушать нормальную экспрессию генов, что приводит к аномалиям.

Примеры онтофилогенетических аномалий:

- Спинальная миелодисплазия: Аномалии в развитии спинного мозга могут быть вызваны нарушениями в экспрессии генов, отвечающих за формирование нервной трубки. Это может привести к таким патологиям, как спина бифида.
- **Аутизм и другие нейропсихиатрические расстройства**: Исследования показывают, что изменения в экспрессии генов, связанных с развитием нейронов и синапсов, могут быть связаны с развитием расстройств аутистического спектра.
- Микроцефалия и макроцефалия: Аномалии в размере головы могут быть следствием нарушений в генах, регулирующих пролиферацию и дифференцировку нейронов. Это может приводить к недостаточному или избыточному количеству нейронов.

Молекулярные механизмы

- **Внутриклеточные сигнальные пути**: Неправильная активация или ингибирование сигнальных путей, таких как Wnt, Hedgehog или Notch, может привести к аномалиям в развитии HC.
- **Транскрипционные факторы**: Гены, кодирующие транскрипционные факторы (например, Рах6, Sox2), играют критически важную роль в формировании и дифференцировке клеток нервной системы. Их нарушения могут вызывать серьезные аномалии.

Исследования и перспективы

Изучение онтофилогенетических аномалий и их связи с нарушениями экспрессии генов является важной областью исследований.

Современные методы, такие как геномное редактирование (например, CRISPR/Cas9), позволяют ученым моделировать и исследовать аномалии на клеточном уровне, что может привести к новым подходам в диагностике и терапии неврологических заболеваний.

CRISPR/Cas9 — это новая технология редактирования геномов высших организмов, базирующаяся на системе иммунной защиты бактерий. В основе этой системы — особые участки бактериальной ДНК, короткие палиндромные кластерные повторы, или CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats).

Литература

- 1. Биология: учебник: в 2 т./ под ред. В.Н. Ярыгина. М.: ГЭОТАР-Медиа, 2011. Т.2. 736 с.
- 2. Биология. Руководство к лабораторным занятиям: учебное пособие/Под ред. Н.В. Чебышева. 2-е изд., М.: ГЭОТАР-Медиа, 2011. 284 с.
- 3. Биология: руководство к практическим занятиям: учебное пособие/ под ред. В.В. Маркиной. М.: ГЭОТАР-Медиа, 2010. 448 с.

