КАЗАНСКИЙ ГОСУДАРСТВЕННЫЙ МЕДИЦИНСКИЙ УНИВЕРСИТЕТ

Филогенез центральной нервной системы

Практическое занятие 1

для студентов 1 курса, обучающихся по специальности «Лечебное дело» (ИОП)

Преподаватель Доцент кафедры медицинской биологии и генетики, к.б.н. Кошпаева Е.С.

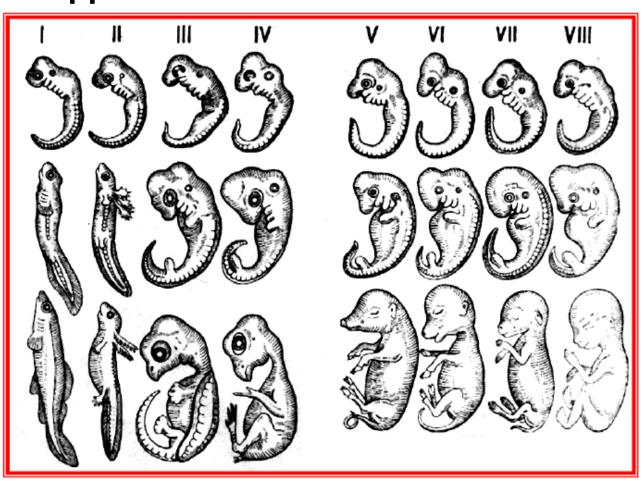
Кафедра медицинской биологии и генетики

• **Цель**: изучить особенности строения и эволюционные преобразования нервной системы беспозвоночных и хордовых. Изучить основные закономерности филогенетических преобразований органов нервной системы. Уметь различать способы морфофункциональных изменений органов нервной системы в фило- и онтогенезе, лежащие в основе формирования пороков развития у человека

Задачи:

- 1. Научится идентифицировать тип НС по основным характеристикам ее строения.
- 2. Проанализировать и интерпретировать информацию о разных типах нервной системы беспозвоночных и позвоночных животных с точки зрения адаптации к среде обитания.
- 3. Провести системный анализ строения НС в эволюционном ряду животных.
- 4. Обосновать возможность формировавния у человека врожденных филогенетически обусловленных пороков развития органов нервной системы.

Филогенез – исторический ряд прошедших отбор онтогенезов, связанных между собой предок – потомок (И. И. Шмальгаузен).


Онтогенез ≒ филогенез

Законы К. Бэра (1828 г):

- 1. Закон зародышевого сходства на ранних этапах эмбриогенеза зародыши различных групп животных (в пределах типа) сходны между собой.
- 2. Закон эмбриональной дивергенции в процессе эмбриогенеза (на поздних стадиях) возникает расхождение признаков зародышей разных систематических групп.
- 3. Закон последовательности появления признаков в процессе эмбриогенеза признаки разного систематического ранга появляются последовательно друг за другом: типа, класса, отряда, рода вида, индивидуума.

• Закон параллелизма Меккеля-Серре:

Каждое существо в своем эмбриональном развитии повторяет взрослые формы животных более низких ступеней развития

Последовательные стадии развития эмбрионов хордовых. I – рыба, II – тритон, III – черепаха, IV – птица, V – свинья, VI – корова, VII – кролик, VIII – человек.

Ч. Дарвин подтвердил связь между онтогенезом и филогенезом, создав учение о рекапитуляциях – повторении у зародышей в процессе онтогенеза признаков их предков по филогенезу.

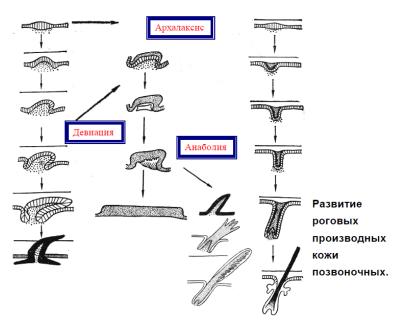
Атавизм – рекапитуляция без последующей редукции (у взрослой особи орган развивается в полном объеме как у предка по филогенезу).

Рудимент – рекапитуляция с последующей редукцией органа, утратившего в процессе филогенеза функциональное значение.

Биогенетический закон – Ф. Мюллер (1864) и Э. Геккель (1866):

Онтогенез всякого организма есть краткое и быстрое повторение филогенеза данного вида

Палингенезы – признаки зародышевого сходства (закладка жаберных щелей, хорды, 2-х камерного сердца у зародышей наземных позвоночных).


Ценогенезы – эмбриоадаптации, приспособительные признаки зародышей, не сохраняющиеся у взрослых форм (зародышевые оболочки наземных позвоночных: амнион, хорион, аллантоис). Опираясь только на биогенетический закон, невозможно объяснить процесс эволюции: бесконечное повторение пройденного не рождает ничего нового. Эволюция протекает благодаря изменениям происходящим в онтогенезе.

<u>Филэмбриогенезы</u> - эмбриональные перестройки, которые включаются в филогенез взрослых организмов (А. Н. Северцов). 3 типа филэмбриогенезов:

Анаболии - надставки, дополнения в развитии органа. Законченный морфообразовательный процесс (полная рекапитуляция) дополняется дальнейшей дифференцировкой (от 2-х камерного к 4-х камерному сердцу, развитие пера).


Девиации - уклонения в развитии органа. На определенном этапе формообразовательного процесса (частичная рекапитуляция) морфогенез приобретает новый характер, и развитие органа идет по другому пути (развитие чешуи рептилий).

Архаллаксисы - изменения закладки органа. В начале морфогенеза (рекапитуляции отсутствуют) возникшая гетеротопия или гетерохрония определяет развитие органа по совершенно новому пути (развитие волосяного покрова у млекопитающих).

Филэмбриогенезы имеют адаптивное значение у взрослых форм.

Характер возникающего филэмбриогенеза зависит от типа возникшей мутации. Если мутационный процесс затрагивает гены, активные в конце формообразовательного процесса, то возникает анаболия, в середине – девиация, в начале – архалаксис.

Эволюция чаще идет путем подбора мутаций, проявляющихся на конечных стадиях морфогенеза т. е. путем анаболий (поэтому наблюдается сходство эмбрионов на ранних стадиях развития, рекапитуляция и выполняется биогенетический закон). Это связано с большой сложностью большинства формообразовательных процессов, не допускающих каких-либо изменений начальных или средних стадий развития.

Архаллаксисы

- Гетеротопия изменение места закладки и развития органа у животных в процессе их индивидуального развития (термин введен Э. Геккелем, 1874).
 - возникает вследствие миграции клеток из одного зародышевого листка в другой, смещения клеток в пределах данного зародышевого листка или вторичного смещения органов.

Пример: смещение сердца у птиц и млекопитающих в грудную полость (у рыб и амфибий оно располагается вблизи головы

- Гетерохрония разновременность, изменение времени закладки и темпа развития органов у потомков животных и растений по сравнению с предками.
 - может выражаться в более ранней закладке и усиленном развитии органа (**Акселерация**) или в более поздней его закладке и замедленном развитии (**Ретардация**), что зависит от времени начала функционирования органа и, следовательно, от условий среды, в которой протекает онтогенез.

Примеры: раннее развитие у млекопитающих мышц языка, благодаря чему новорождённый детёныш способен производить сосательные движения.

Основные способы морфофункциональных изменений органов в филогенезе

• Смена функций органов (одновременно меняется и строение)

Например: плавательный пузырь кистеперых рыб преобразовался в орган наземного дыхания — легкие; кожная чешуя рыб в процессе эволюции преобразовалась в зубы млекопитающих; из яйцеклада членистоногих образовалось жало.

• Расширение функций в связи с меняющимися условиями

Грудные плавники рыб вначале выполняли функции обеспечения устойчивости тела в воде на определенном уровне, затем они стали определять направление движения. У донных рыб они выполняют функции опоры и передвижения по дну водоема.

• Усиление функции органа

Увеличиваются размеры органа, и изменяется его гистологическая структура. Пример: развитие переднего мозга у позвоночных животных.

Основные способы морфофункциональных изменений органов в филогенезе

• Замещение органов и функций

Один орган исчезает или становится рудиментарным, а замещает его другой орган. Пример: замена хорды позвоночником, замена головной почки у позвоночных туловищной, а потом – тазовой.

• Принцип компенсации функций

мускулистый (мышечный) желудок птиц компенсирует отсутствие у них зубов; участие кожи амфибий в дыхании компенсирует недостаточное легочное дыхание.

Интегрирующими факторами эволюции, обеспечивающими целостность онтогенеза и филогенеза, являются корреляции и координации.

Корреляции - взаимоотношения между частями организма, обеспечивающие целостность его онтогенеза.

▶ геномные – в основе плейотропия, взаимодействие и сцепление генов;

Например: сочетание волос светлых и гладких, темных и курчавых; редукция крыльев у дрозофилы и одновременное укорочение задней пары конечностей.

морфогенетические - обусловлены эмбриональной индукцией;

определяются внутренними факторами на ранних стадиях эмбрионального развития, когда еще не установились функциональные связи между частями зародыша. В основе этих корреляций лежит эмбриональная индукция

- Например: дорзальная губа бластопора индуцирует развитие нервной трубки, хорды и сомитов.

> эргонтические - в основе взаимозависимость между функциями органов.

Например, связь между гонадотропной функцией гипофиза и развитием половых желез.

Координации - устойчивые взаимоотношения между органами или частями организма в процессе эволюции.

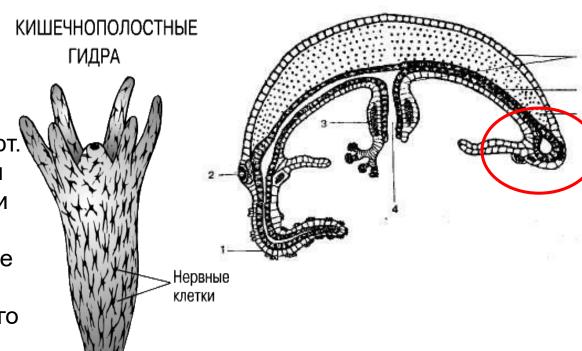
- топографические проявляются между структурами, связанными друг с другом пространственно. Основаны на морфогенетических корреляциях.
- динамические взаимное соответствие структур, связанных функционально (коадаптации). Основаны на эргонтических корреляциях.
- биологические (экологические) возникают между структурами, непосредственно не связанными по функциям и месту положения. Связующее звено между ними - адаптации к среде.

Онтофилогенетические механизмы возникновения пороков развития у человека

- 1. Рекапитуляции результат недостаточности или отсутствия анаболий в критические периоды развития
 - (пример: 3-х камерное сердце, сохранение 2-х дуг аорты)
- 2. Параллелизмы независимое появление сходных признаков у человека и животных. Возникают 3 путями:
 - а) развитие признаков, аномальных для человека, но нормальных для животных (двурогая матка норма для хищников, порок развития у человека);
 - б) развитие наследственных признаков, аномальных для человека и животных (расщелина верхней губы у человека и мыши);
 - в) развитие сходных заболеваний ненаследственного характера (нефробластома у человека и поросят) Причины: Сходные мутации (закон гомологических рядов в наследственной изменчивости)
- •Конвергенции приобретение сходных признаков не родственными организмами (клешнеобразная кисть у человека и рака —> НЕ ЯВЛЯЕТСЯ онтофилогенетически обусловленным

Тип Coelenterata (Кишечнополостные)

Эволюционные предпосылки возникновения нервной системы:

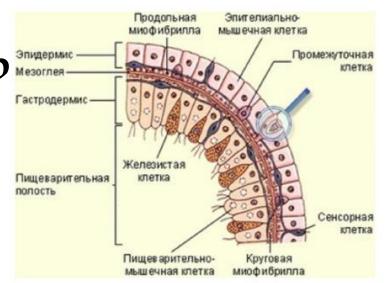

- 1. Появление многоклеточности и двуслойности
 - 2. Появление радиальной симметрии

Нервная система диффузного типа.

Класс **Hydrozoa** (Гидроидные)

Нервные узлы отсутствуют. Нейроны распределены диффузно в эктодерме и энтодерме. Максимальное скопление

нейронов - в области щупалец и вокруг ротового отверстия.


Класс **Szyphozoa** (Сцифоидные)

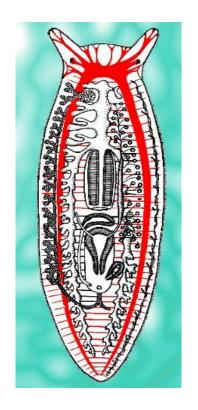
Нервные узлы отсутствуют. Нейроны формируют кольцо по периферии зонтика и вокруг ротового отверстия.

Максимальное скопление нейронов - в области щупалец. Имеются фоторецепторы и органы равновесия – статоцисты.

Изучаемый препарат: Поперечный и продольный срезы гидр мезоглея—

Тип Plathelminthes (Плоские черви)

Эволюционные предпосылки преобразования нервной системы:


- 1. Появление третьего зародышевого листка мезодермы
 - 2. Полость тела отсутствует, заполнена паренхимой
 - 3. Появление билатеральной симметрии

Нервная система **ганглиозно-стволовая «ортогон»** или **«лестничного» типа**— представлена **нервными узлами, нервными стволами и нервными комиссурами**

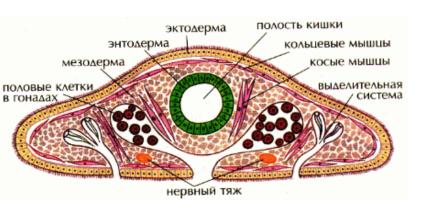
Класс **Turbellaria**

Пара нервных узлов в передней части тела, от которых отходят нервные стволы, соединенные нервными комиссурами Имеются фоторецепторы

Класс Trematoda

Окологлоточное нервное кольцо, от которого отходят три пары нервных стволов, соединенных нервными комиссурами

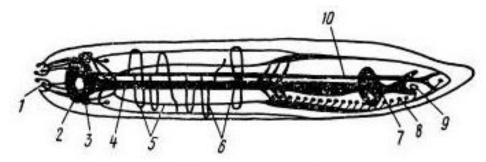
Класс Cestoda


Непарный нервный ганглий в области сколекса, от которого отходит пара нервных стволов, тянущихся вдоль стробилы и соединенных в каждом членике нервными комиссурами

Изучаемый препарат: Поперечный срез молочной планарии (турбилярии)

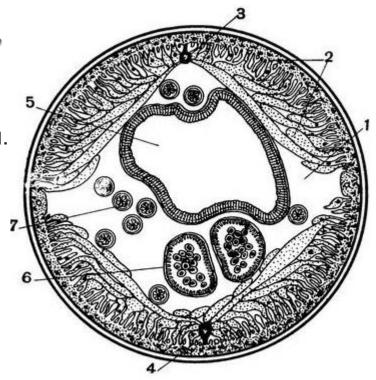
НЕРВНУЮ СИСТЕМУ

составляют головной нервный узел и отходящие от него нервные стволы, соединенные поперечными перемычками.


Тип Nemathelminthes (Круглые черви)

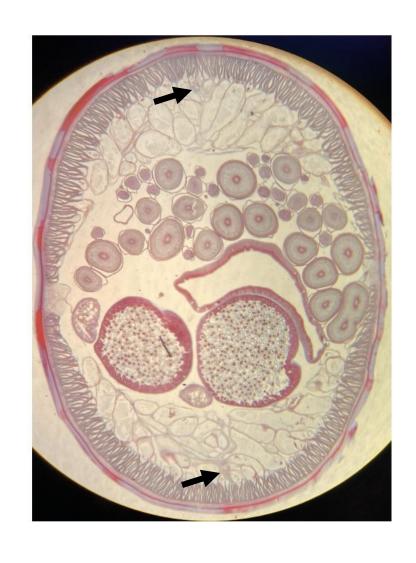
Эволюционные предпосылки усложнения нервной системы:

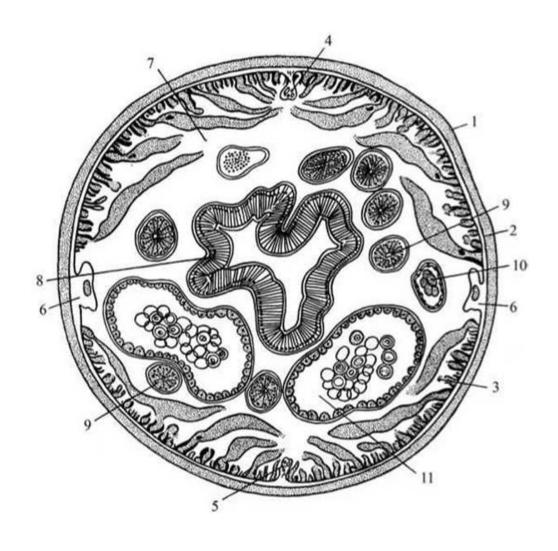
- 1. Появление первичной полости тела (бластоцель)
- 2. Развитие сенсорных органов (механорецепторы и хеморецепторы)


Нервная система ганглиозно-стволовая «ортогон» или «лестничного» типа— представлена нервными узлами, нервными стволами и нервными комиссурами

Состоит из окологлоточного нервного кольца, от которого отходят нервные стволы, из которых наиболее выделяются брюшной и спинной. Стволы соединены друг с другом поперечными тяжами - комиссурами.

Центральный отдел нервной системы круглого червя (аскариды):


1 — околоротовые сосочки с осязательными окончаниями и иннервирующими их нервами, 2 — окологлоточное нервное кольцо,
 3 — боковые головные ганглии, 4 — брюшной нервный тяж, 5 — боковые нервные тяжи, 6 — кольцевые нервы, 7 — задний ганглий,
 8 — чувствительные сосочки с соответствующими нервами, 9 — анальное отверстие, 10 — спинной нервный тяж

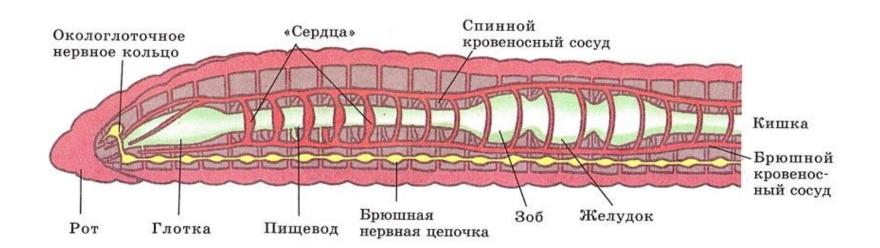


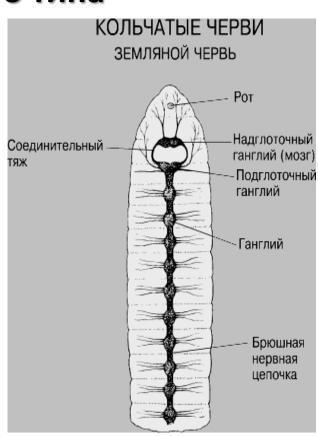
Поперечный разрез через тело аскариды:

1 — полость тела, 2 — кожно-мускульный мешок; 3, 4 — спинной и брюшной нервный ствол; 5 — кишечник; 6 — матка; 7 — явчники.

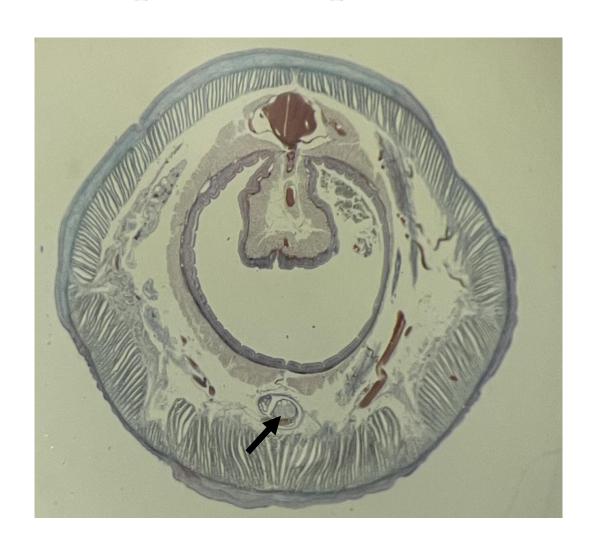
Изучаемый препарат: **Поперечный срез круглого червя (аскариды)**

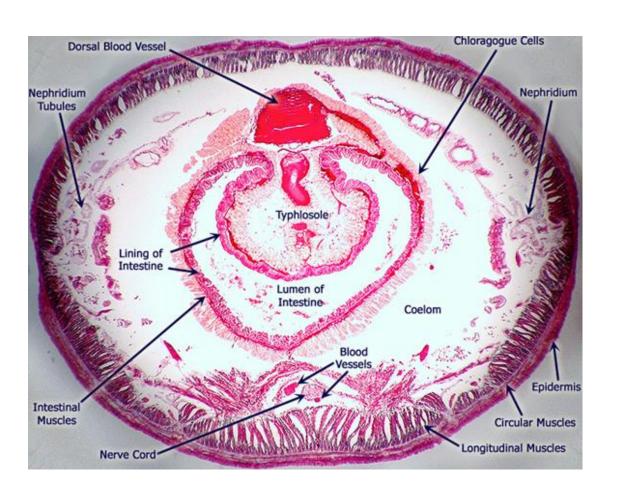
Тип Annelides (Кольчатые черви)


Эволюционные предпосылки усложнения нервной системы:

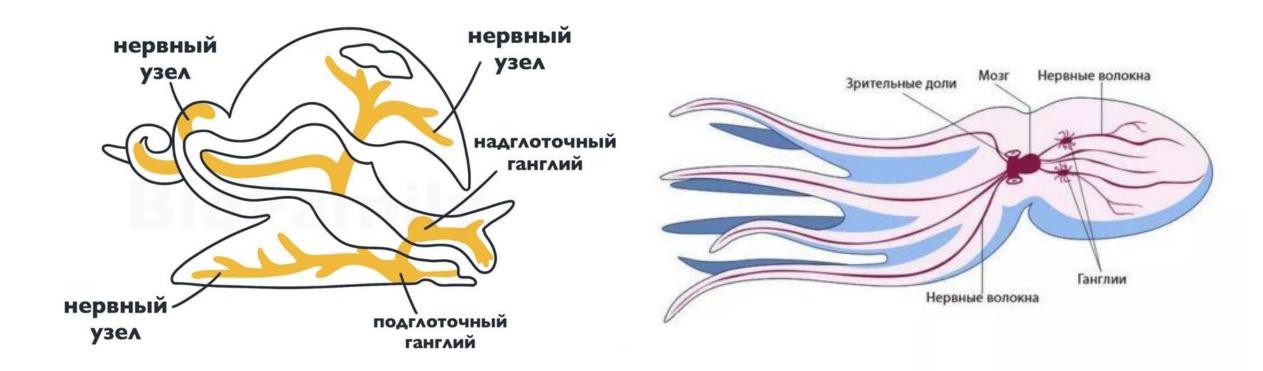

- 1. Появление целома и гомономной метамерии (сегментации) тела
 - 2. Появление нервной системы типа брюшной нервной цепочки

Нервная система ганглиозно-стволового типа


Окологлоточное нервное кольцо состоит из надглоточного нервного ганглия, (функция головного мозга), связанного с подглоточным нервным ганглием.


Пара нервных узлов на вентральной стороне в каждом сегменте, соединенных при помощи нервных стволов с узлами предыдущего и последующего сегментов — брюшная нервная цепочка

Изучаемый препарат: **Поперечный срез кольчатого червя (дождевой червь)**



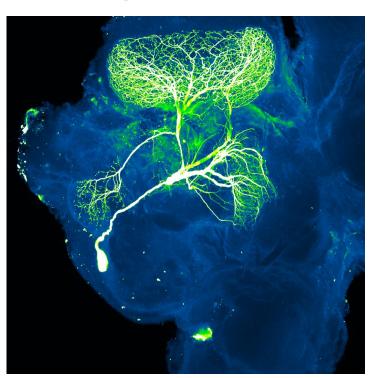
Тип Mollusca (Моллюски)

Эволюционные предпосылки усложнения нервной системы:

- 1. Утрата сегментации и формирование паренхимы
 - 2. Формирование отделов тела.

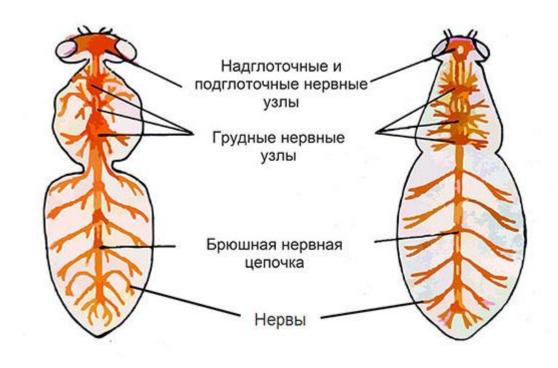
Нервная система разбросанно узлового типа

Изучаемый препарат: **Внутренняя организация тела виноградной улитки**


Тип Arthropoda (Членистоногие)

Эволюционные предпосылки усложнения нервной системы (на примере насекомых):

- 1. Гетерономная сегментация и слияние сегментов, формирование отделов тела
 - 2. Появление поперечно-полосатой мускулатуры
- 3. Развитие ходильных конечностей и крыльев (сложные двигательные реакции)
 - 4. Органы чувств (глаза, органы обоняния, осязания, вкуса)

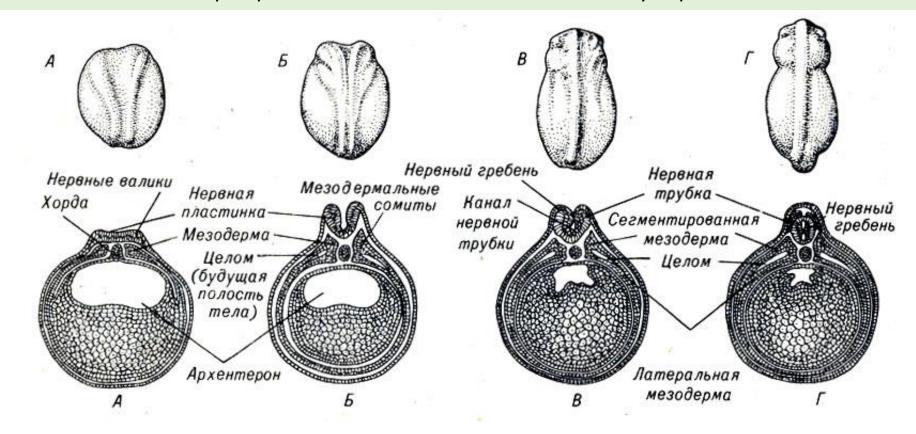


Нервная система сложная ганглиозно-стволового типа, с цефализацией

Преобразования:

- 1. Укрупнение узлов брюшной нервной цепочки и уменьшение их количества
- 2. Усложнение «головного мозга» и дифференцировка на 3 отдела

Нейроны (зелёным и белым) в головном мозге (синим).


Тип Chordata (Хордовые)

Эволюционные предпосылки:

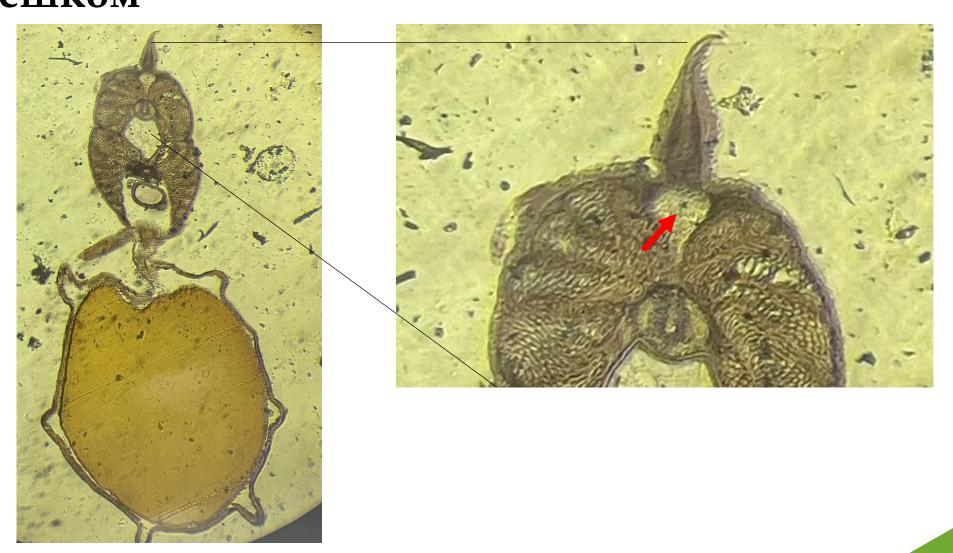
- 1. Сохранение внутренней сегментации у бесчерепных
 - 2. Формирование отделов тела у черепных

Эволюционные преобразования:

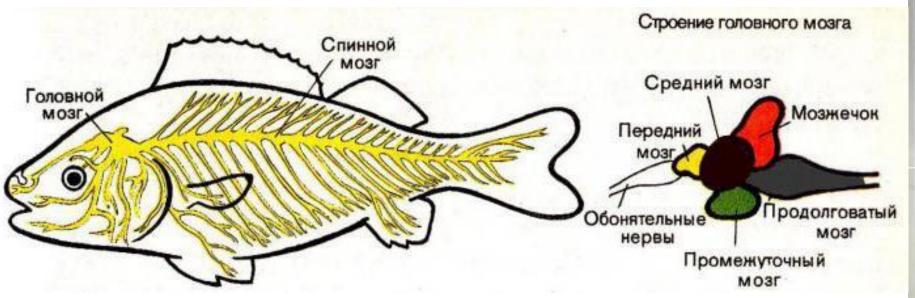
- 1. Формирование нервной трубки (НТ), расположенной над хордой и содержащей полость невроцель.
 - 2. Формирование головного и спинного мозга у черепных.

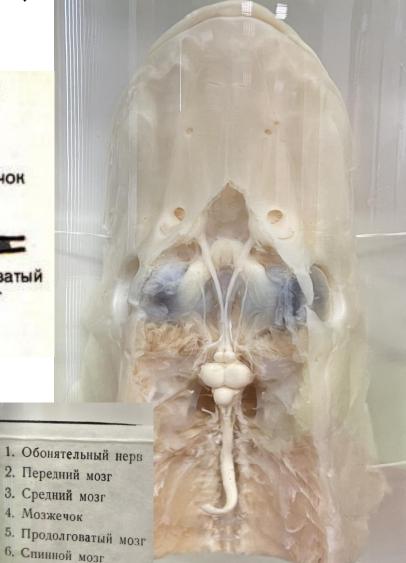
Изучаемый препарат:

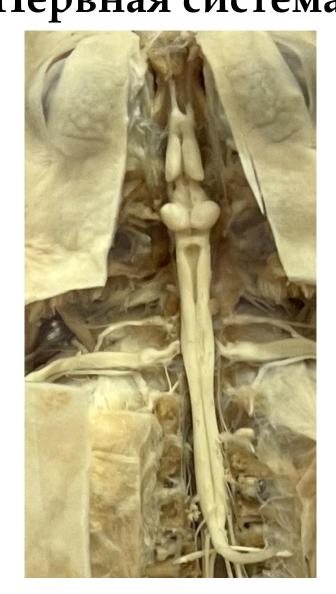
Ланцетник, поперечный и продольный срезы

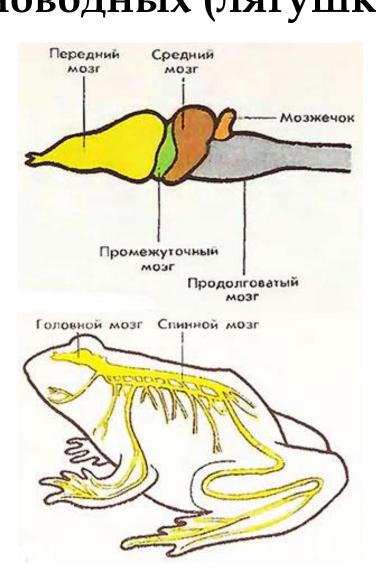


У бесчерепных Подтип Acrania нервная трубка формируется из **эктодермы**, проходя стадии нервной пластинки, нервного желобка и собственно нервной трубки.

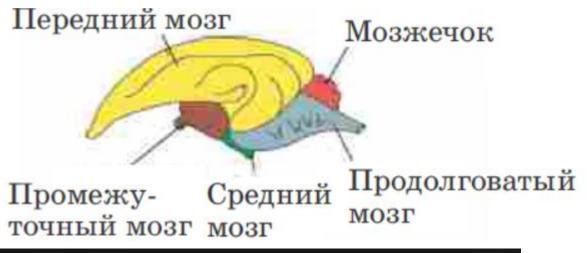

В переднем отделе НТ имеется утолщение, в области которого невроцель расширяется, образуя желудочек. Имеются 2 пары ЧМН, светочувствительные глазки Гессе, обонятельные ямки.

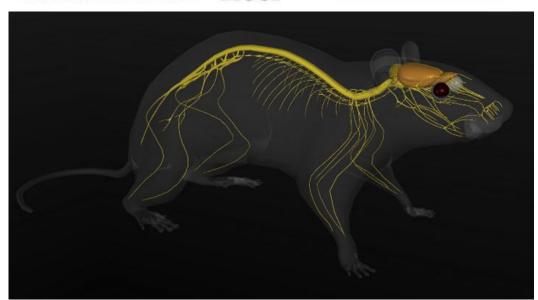

Изучаемый препарат: Поперечный срез зародыша форели с желточным мешком

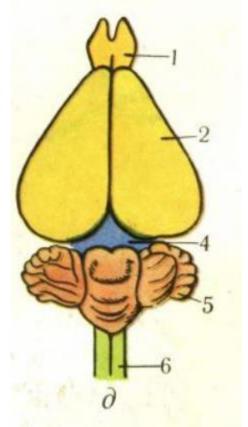

Изучаемый препарат:


Нервная система костистой рыбы (Щука)

Изучаемый препарат: **Нервная система земноводных (лягушка)**

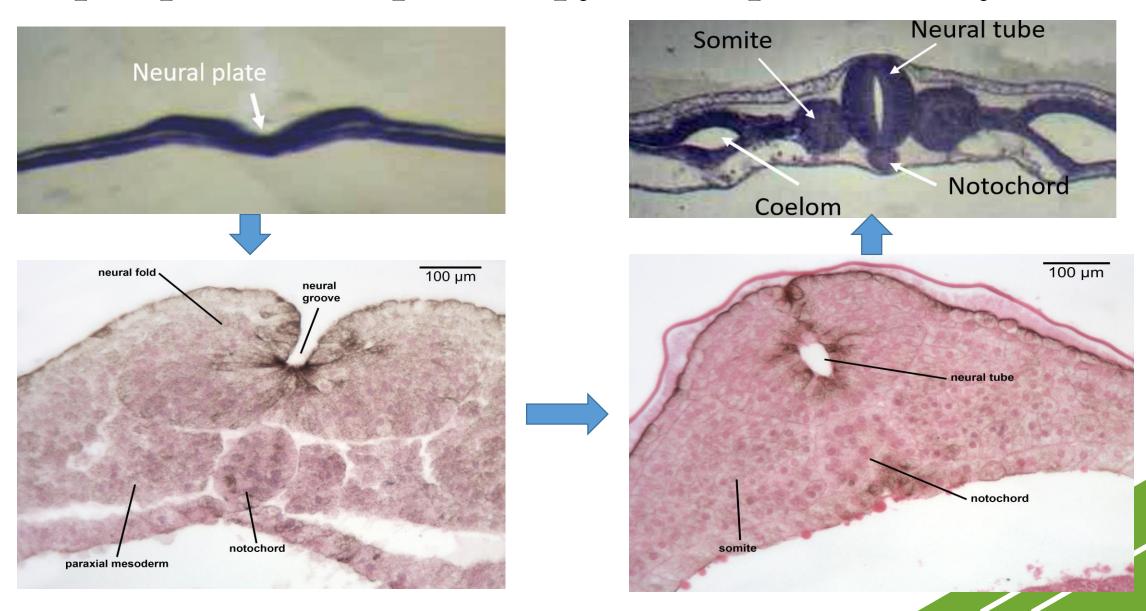


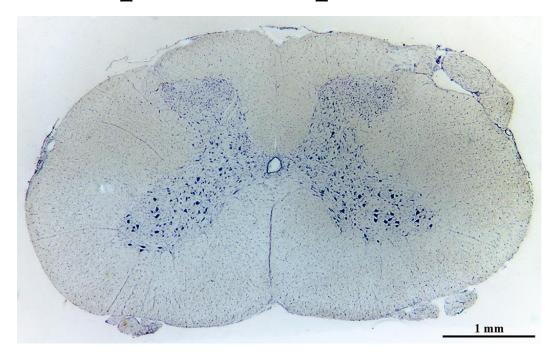




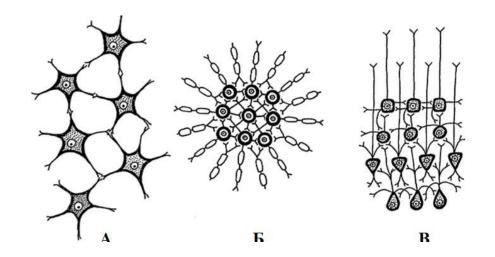
Изучаемый препарат:

Нервная система млекопитающих (крыса)





Изучаемый препарат:


Формирование нервной трубки (зародыш лягушки)

Изучаемый препарат: **Поперечный срез спинного мозга**

А) Нейроны с ретикулярной организацией не образуют плотных скоплений, а расположены диффузно, разбросанно (древний уровень организации трубчатой НС – встречается в СМ и ГМ в составе ретикулярной формации)

Типы (уровни) организации нейронов в нервной системе хордовых животных:

А – ретикулярный, Б – ядерный и ганглионарный, В корковый

- Б) нейроны образуют достаточно компактные неслоистые скопления, которые, если они находятся в ЦНС, называются ядрами; и нервными ганглиями (или узлами), если они находятся в периферической нервной системе.
- В) нервные клетки образуют слои, причем в каждом слое находится один или несколько типов нейронов, сходных по строению и функциям, выделяют корковый уровень организации нервных клеток (самый прогрессивный уровень)

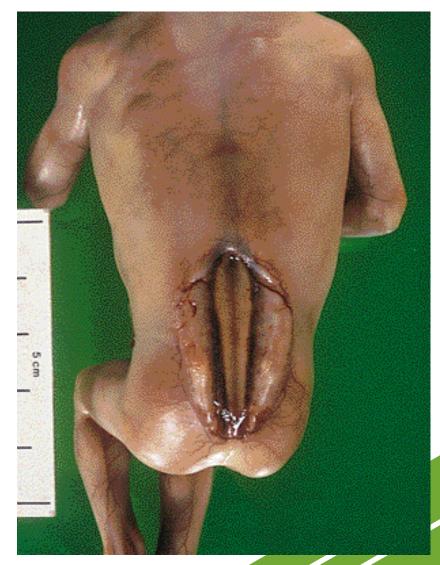
Основные направления и закономерности эволюции нервной системы у многоклеточных животных

- 1. Появление раздражимости
- 2. Нервная ткань имеет эктодермальное происхождение у хордовых животных, у беспозвоночных присутствует ее полигенез
- 3. Эволюция нейронов проходила одновременно с возникновением специализированных мышечных клеток (т.е. связано с развитием опоры и движения). Нервная система усложнялась по мере усложнения опорно-двигательного аппарата
- 4. Эволюция нервной системы протекала на основе появления и последующего усложнения строения нервных клеток и межнейронных связей. *специализация* нейронов в ходе эволюции (появление чувствительных, вставочных и двигательных нейронов).
- Развитие нервной системы в филогенетическом ряду животных сопровождалось прогрессирующим увеличением количества нервных клеток, особенно вставочных нейронов. Также росло количество и разнообразие морфотипов клеток нейроглии.

Основные направления и закономерности эволюции нервной системы у многоклеточных животных

- 6. Филогенетическое усложнение нервной системы у животных сопровождалось процессами *централизации* нервной ткани концентрацией тел нейронов сначала в нервные узлы и нервные цепочки, а затем в трубчатые и корковые структуры. Прогрессивным проявлением централизации является энцефализация.
- 7. Иерархизация нервной системы выражается в филогенетическом развитии соподчинения одних ее участков другим. Так, в процессе эволюции ЦНС у позвоночных происходило подчинение ее задних отделов передним, осуществлялся переход управления функциями из спинного мозга в головной.
- 8. Развитие ЦНС у позвоночных было связано с *кортикализацией строения и функций -* прогрессивным усложнением новой коры *неокортекса*, которое наиболее характерно для эволюции млекопитающих.

Основные эволюционные преобразования нервной системы у человека


- 1. Дифференцировка спинного мозга в соответствии с сегментами туловища, редукция его нижнего отдела в связи с исчезновением хвоста и формированием парных задних конечностей.
- **2. Субституция** замещение ихтиопсидного типа головного мозга позвоночных более прогрессивным зауропсидным, а затем маммалийным. Замещение старой коры (архикортекса) новой корой (неокортексом).
- 3. Увеличение числа нейронов и синапсов: приводит к усилению главной координирующей функции НС, что способствует большей сложности обработки информации и улучшению когнитивных функций, усложнения, дифференцировки, появления новых отделов и центров.
- 4. Увеличение объема мозга.
- **5. Разделение функций полушарий**: У человека наблюдается выраженная асимметрия между правым и левым полушариями мозга. Левое полушарие обычно отвечает за речевые и аналитические функции, тогда как правое за пространственное восприятие и творчество.
- **6. Развитие лимбической системы**: Эта часть мозга, отвечающая за эмоции и память, также претерпела изменения, что позволило лучше адаптироваться к социальным взаимодействиям и эмоциональным реакциям.

Филогенетически обусловленные пороки развития нервной системы у человека

Планиневрия (рахисхиз) – грубая аномалия развития характеризующаяся незаращением кожных покровов и позвоночного канала (spina bifida).

Данная форма является примером тяжёлого нарушения нейруляции спинного мозга (спинной мозг не сомкнулся в трубку и зияет в расщеплённом позвоночном канале).

Порок связан с нарушением перемещений клеток и их адгезии в зоне формирования нервной трубки в процессе нейруляции, что приводит к ее незамыканию.

• Назовите термин, обозначающий:

- 1. Усиленное развитие головного отдела тела у билатерально симметричных животных в процессе их эволюции (Цефализация)
- 2. Повторение признаков далеких предков в онтогенезе современных организмов (Рекапитуляция)
- 3. Признак, свойственный отдалённым предкам, но утраченный в ходе эволюции у ближайших родственных групп (атавизм)
- 4. Орган, утративший своё основное значение в процессе эволюционного развития организма (рудимент)

Ответьте на вопросы:

- 1. Назовите онтофилогенетические механизмы, лежащие в основе возникновения врожденных пороков развития у человека?
- 2. Каким образом оказывал влияние на эволюцию нервной системы образ жизни и характер локомоций беспозвоночных?
- 3. Назовите ключевые группы беспозвоночных, имеющих диффузную нервную систему.
- 4. У головоногих моллюсков скорость проведения нервного импульса по гигантским нервным аксонам может достигать 100 м/с. Однако наибольших показателей скорость проведения нервного импульса достигает у позвоночных в мякотных нервных волокнах, в которых она составляет 120 м/с. Какие особенности строения отростков нейронов у моллюсков и позвоночных животных могут объяснить такую высокую скорость?
- 5. В чем сущность и значение конвергентного сходства в строении нервной системы и органов чувств головоногих и некоторых хордовых?

Верны ли следующие утверждения?

- 1. В ходе эволюции у круглых червей сформировалась стволовая нервная система, нейроны которой разбросаны в эктодерме в виде сети.
- 2. Основными направлениями эволюционного развития нервной системы были централизация элементов, цефализация (развитие головного мозга и головных ганглиев) и общее увеличение числа нейронов и их синаптических связей.
- 3. Миелинезация нервных волокон существенно повысила скорость проведения нервного импульса по гигантским аксонам кальмара до 100 м/с.
- 4. В онтогенезе у беспозвоночных нервная система развивается из эктодермы и энтодермы.
- 5. Все нейроны диффузной системы мультиполярные.

Литература

- 1. Биология: учебник: в 2 т./ под ред. В.Н. Ярыгина. М.: ГЭОТАР-Медиа, 2011. Т.2. 736 с.
- 2. Биология. Руководство к лабораторным занятиям: учебное пособие/Под ред. Н.В. Чебышева. 2-е изд., М.: ГЭОТАР-Медиа, 2011. 284 с.
- 3. Биология: руководство к практическим занятиям: учебное пособие/ под ред. В.В. Маркиной. М.: ГЭОТАР-Медиа, 2010. 448 с.
- 4. Перевозникова Т. В., Шляхтин Г. В. Функциональная организация нервной системы: гистология, анатомия, эмбриогенез, эволюция (межпредметные аспекты). II часть. Нервная система беспозвоночных и хордовых животных. Учебно-методическое пособие для студентов биологических факультетов. -Саратов: ООО Амирит, 2021. –87 с.: ил.

