КАЗАНСКИЙ ГОСУДАРСТВЕННЫЙ МЕДИЦИНСКИЙ УНИВЕРСИТЕТ

Филогенез головного мозга

Практическое занятие 2

для студентов 1 курса, обучающихся по специальности «Лечебное дело» (ИОП)

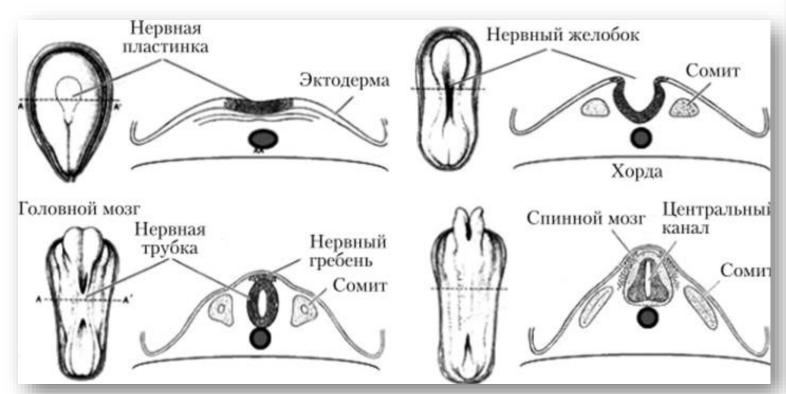
Преподаватель Доцент кафедры медицинской биологии и генетики, к.б.н. Кошпаева Е.С.

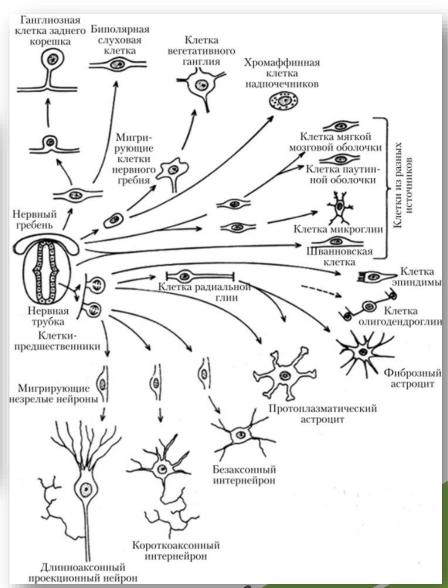
Кафедра медицинской биологии и генетики

• **Цель**: Уметь охарактеризовать основные этапы и направления эволюции головного мозга позвоночных и использовать закономерности филогенеза для объяснения развития, строения и функций головного мозга человека, а также механизма аномалий развития.

Задачи:

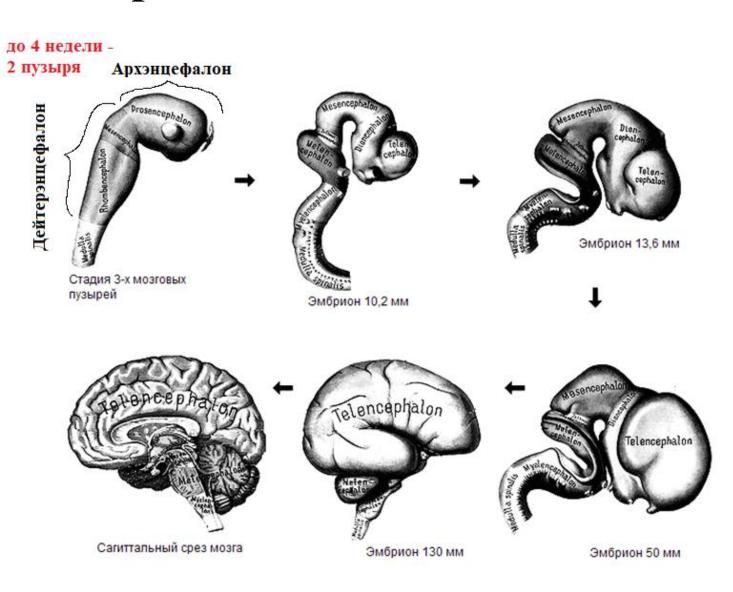
- 1. Изучить и уметь охарактеризовать особенности строения различных отделов головного мозга позвоночных
- 2. Научится идентифицировать тип головного мозга по основным характеристикам его строения.
- 3. Уметь идентифицировать отделы головного мозга на макропрепаратах различных классов позвоночных и проследить их гомологию.
- 4. Знать закономерности онтофилогенеза головного мозга и использовать эти знания для объяснения аномалий развития нервной системы у человека.




Мотивационная составляющая

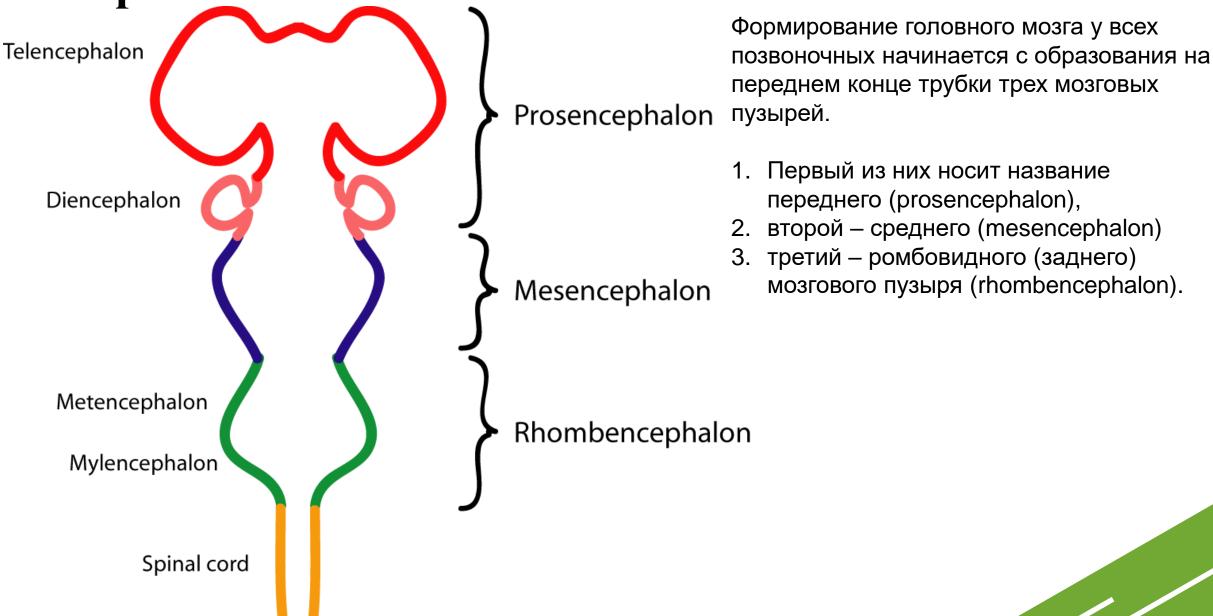
Головной мозг человека, как и другие системы органов, сформировался в результате преобразования структур предковых форм.

• Знание основных этапов и направлений этих преобразований необходимо для правильного понимания происхождения структур головного мозга и их функций [последовательность этапов эмбриогенеза, формирование старой (гиппокамп) и новой коры и т.д.]. Развитие аномалий головного мозга человека часто сопряжено с филогенетическими преобразованиями.


Эмбриогенез нервной системы человека

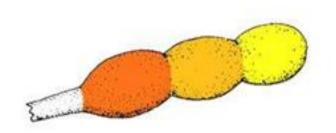
Развитие и миграция нервных и глиальных

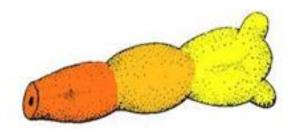
Эмбриогенез головного мозга человека

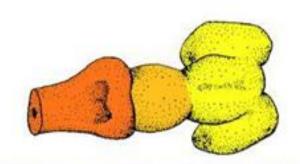

Формирование головного мозга у всех позвоночных начинается с образования на переднем конце трубки трех мозговых пузырей.

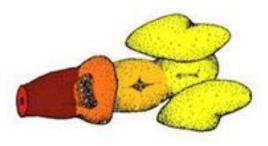
- 1. Первый из них носит название переднего (prosencephalon),
- 2. второй среднего (mesencephalon)
- 3. третий ромбовидного (заднего) мозгового пузыря (rhombencephalon).

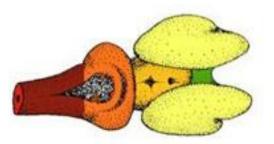
В нижней части переднего мозга выпячиваются обонятельные лопасти (из них развиваются обонятельный эпителий носовой полости, обонятельные луковицы и тракты).

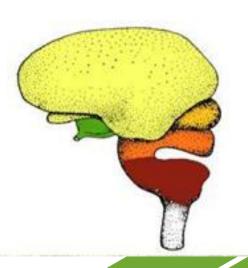

Из дорсолатеральных стенок переднего мозгового пузыря выступают два глазных пузыря. В дальнейшем из них развиваются сетчатка глаз, зрительные нервы и тракты.

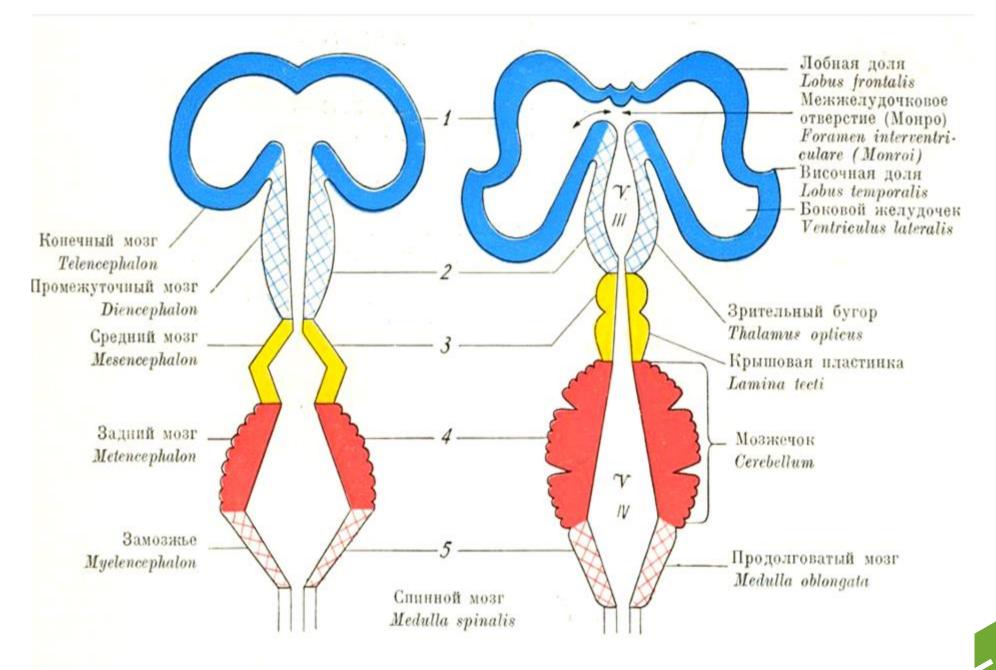

Эмбриогенез головного мозга человека

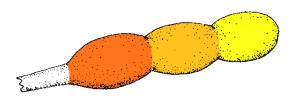


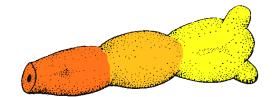

Эмбриогенез головного мозга человека

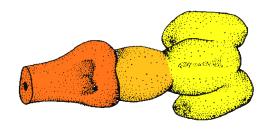

- Из переднего мозгового пузыря формируются передний (конечный) и промежуточный мозг,
- из среднего средний мозг,
- из заднего (ромбовидного) задний мозг, включающий Варолиев мост и мозжечок, а также продолговатый мозг.





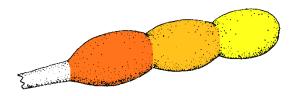


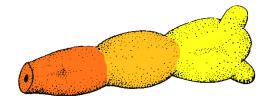


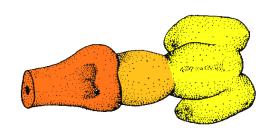

Образование отделов головного мозга из 5 пузырей (схема).

Эволюционные этапы развития головного мозга

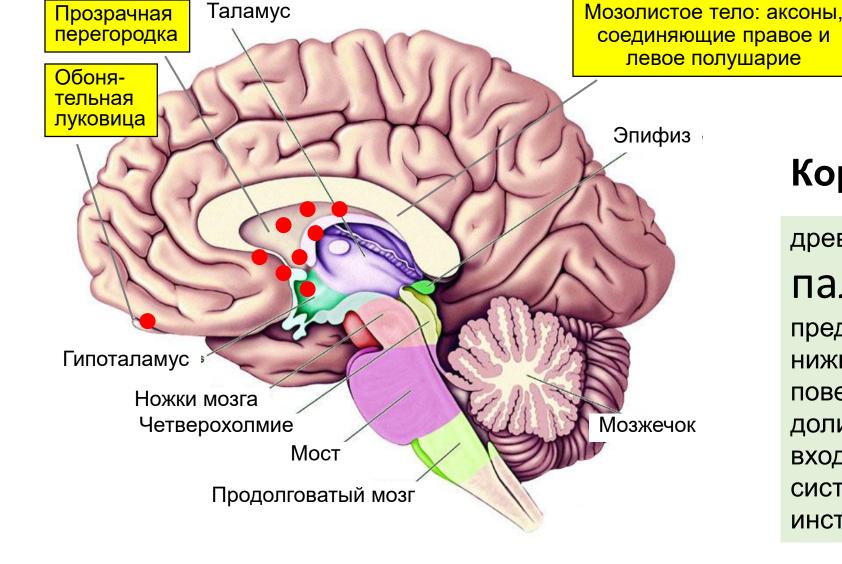
• Цефализация






- Первый этап цефализации
- из переднего отдела нервной трубки формируются три первичных пузыря.
- Развитие заднего пузыря (первичный задний, или ромбовидный мозг, rhombencephalon)
- Задний мозг по мере развития делится на собственно задний мозг (metencephalon), состоящий из моста и мозжечка, и продолговатый мозг (myelencephalon), являющийся переходным между головным и спинным мозгом.

Эволюционные этапы развития головного мозга

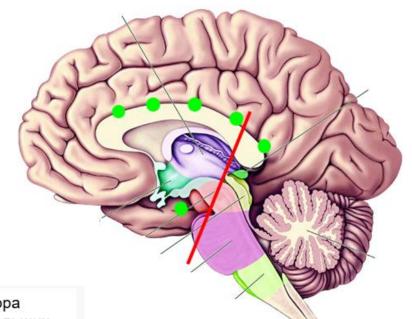

• Цефализация

- На втором этапе цефализации произошло развитие *второго первичного пузыря* (*mesencephalon*) под влиянием формирующегося здесь зрительного анализатора.
- На третьем этапе цефализации формировался передний мозг (prosencephalon)
- В последующем передний мозг разделился на промежуточный и конечный мозг (diencephalon et telencephalon).

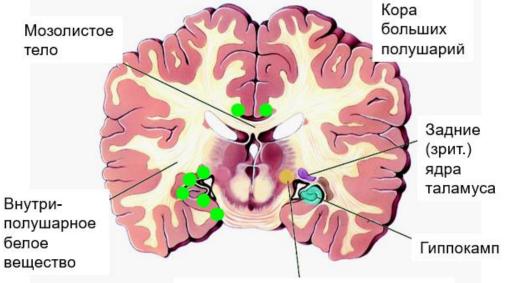
Кора больших полушарий: древняя, старая и новая

Кортиколизация

древняя кора

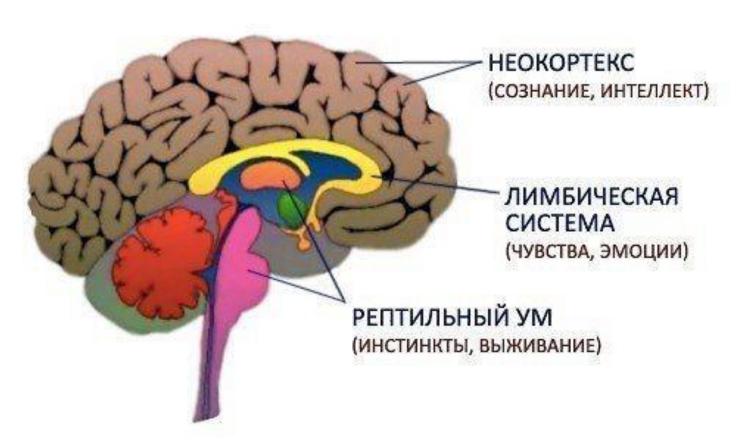

палеокортекс

представлена в области нижнемедиальной поверхности височной доли, функционально она входит в лимбическую систему и отвечает за инстинктивные реакции


Древняя кора: обонятельные структуры (обонятельная луковица, прозрачная перегородка, область вокруг передней части мозолистого тела)

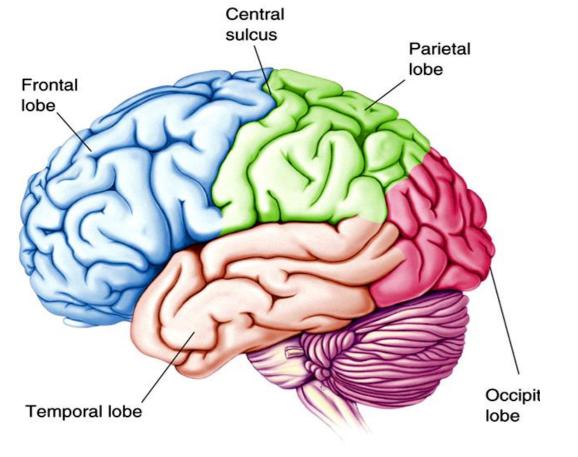
Кортиколизация

Старая кора больших полушарий: • сверху — на границе с мозолистым телом; внутри височной доли — гиппокамп (центры кратковременной памяти).

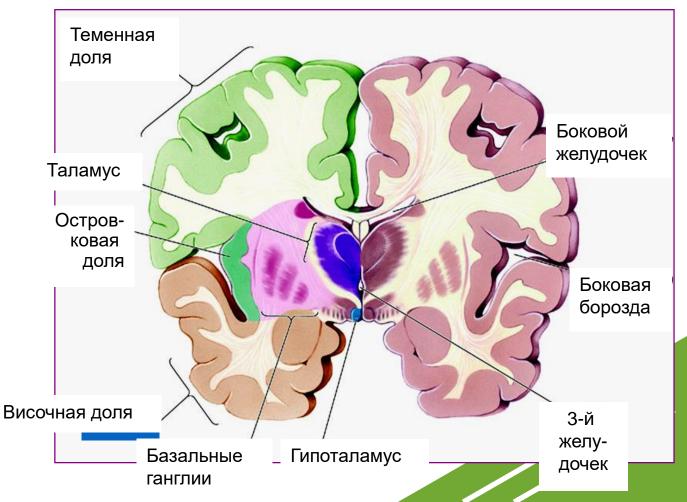

Старая кора (archicortex, архикортекс), как и древняя, состоит только из 2–3 слоёв нейронов.

Задние (слуховые) ядра таламуса

- У амфибий и рептилий она занимает верхние участки больших полушарий.
- Однако, начиная с примитивных млекопитающих, по мере увеличения новой коры, она постепенно смещается на срединную поверхность полушарий.
- У человека этот вид коры находится в зубчатой извилине и гиппокампе.


Кортиколизация

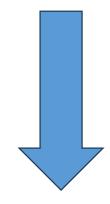
Дальнейшее совершенствование сложных форм поведения связано с формированием новой коры (neocortex, неокортекс).


Новая кора наиболее развита у человека, её площадь достигает 220 000 мм², при этом две трети площади коры находится в её складках.

Неокортекс становится центром обучения, памяти и интеллекта, может контролировать функции других отделов мозга, влияя на реализацию эмоциональных и инстинктивных форм поведения.

Доли новой коры: височная, лобная, теменная, затылочная, островковая (на дне боковой борозды),

Новая кора больших полушарий: на боковой поверхности — две самых крупных борозды (боковая и центральная).



Особенности нейронов головного мозга человека

С 2013 по 2021 год - крупный международный проект по созданию карт активности мозга BRAIN Initiative. Первая часть проекта **BRAIN Initiative Cell Census Network (BICCN)** завершилась составлением **Атласа типов клеток и анатомической нейронной схемы** первичной моторной коры головного мозга млекопитающих — мышей, обезьян и человека.

использовали анализ транскриптома — полного набора считываний генов в клетке, который содержит инструкции по созданию белков, и эпигенома — набора химических модификаций ДНК клетки

в человеческом мозге есть специализированные нервные клетки, отвечающие за адаптацию к изменяющейся обстановке и обработку нового опыта. Также в человеческих нейронах больше генов, влияющих на развитие речи.

Сравнительный анализ выявил **значительные различия в количестве типов нейронов** в мозге мышей, нескольких видов обезьян и человека. Так, в первичной моторной коре мозга мартышек-мармозеток выделили 94 кластера, а в человеческих образцах — 127 типов, и только 45 типов были общими для всех.

Особенности нейронов головного мозга человека

Ученые зафиксировали различия в олигодендроцитах мозга человека и шимпанзе. Это специфические клетки, которые окружают нейроны, помогая им быстрее обрабатывать и передавать сигналы.

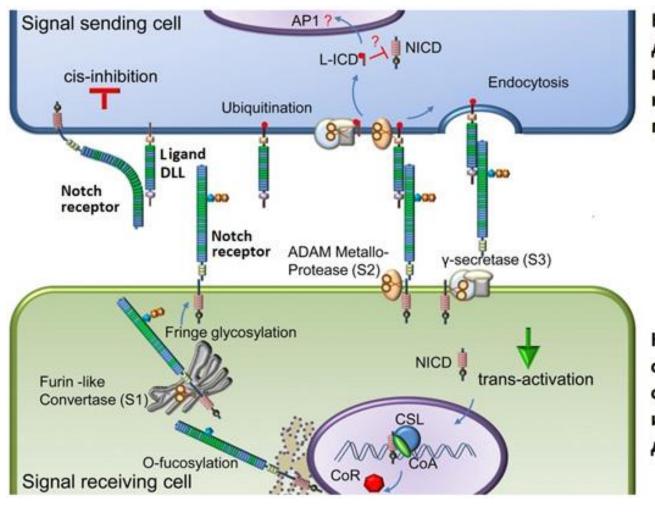
Оказалось, что у человека по сравнению с приматами активность генов в преолигодендроцитах — еще незрелых клетках мозга — сохраняется и во взрослом возрасте.

Гены активируются каждый раз в ответ на травмы, стресс, а также любую нестандартную ситуацию. Этот механизм позволяет человеку обучаться в течение всей жизни.

Особенности нейронов головного мозга человека

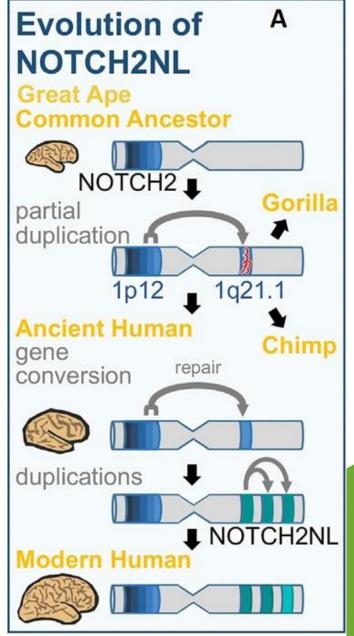
При сравнении ДНК нейронов современных людей, неандертальцев и денисовцев, при котором был проведен анализ не только самого генетического кода, но и клеточных механизмов, регулирующих экспрессию генов, были выявлены десятки генов, функции которых неодинаковы у представителей нашего вида и древних родственных видов.

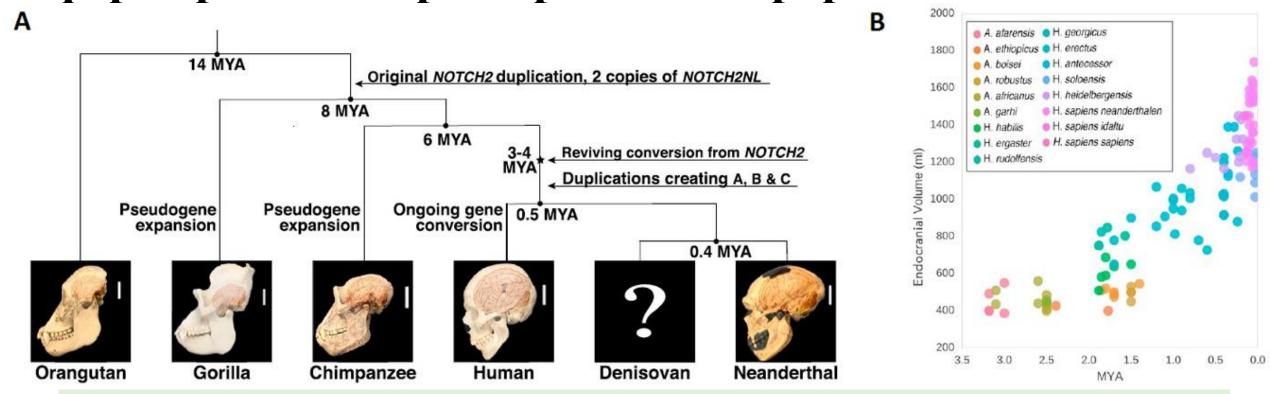
Особенно много различий в нейронах задней поясной извилины — отдела мозга, отвечающего за мыслительную активность в состоянии бодрствования.


Группы генов, связанных с эволюцией головного мозга

Гены **NOTCH2NL** задерживают дифференцировку кортикальных стволовых клеток в нейроны, что приводит к увеличению количества нейронов в процессе развития. Обнаружены только у человека, активно экспрессируются в нервных стволовых клетках коры головного мозга человека.

С экспрессией генов **NOTCH2NL связывают** увеличение в процессе эволюции объема человеческого головного мозга почти в три раза, а также расширение нескольких функциональных областей коры головного мозга по сравнению с первоначальным состоянием.


У горилл и шимпанзе имеется неактивный ген **NOTCH2NL** (усеченный) — образовался путем частичной дупликации гена NOTCH2, который отвечает за развитие головного мозга. Ген **NOTCH2** контролирует выбор пути развития: переход корковых стволовых клеток в нейроны или продолжение их деления.


Группы генов, связанных с эволюцией головного мозга

Клетка будет дифференцироваться и перемещаться в кортикальную пластинку

Клетка сохранит свойства стволовой клетки и продолжит делиться

участок хромосомы 1q21 (именно здесь располагаются 3 из 4 членов семейства Notch2NL) известен как горячая точка делеций и дупликаций в популяции людей, причем эти мутации ассоциируются с патологиями развития и работы центральной нервной системы. Мутации в гене

→Микроцефалии или микроцефалия

Группы генов, связанных с эволюцией головного мозга

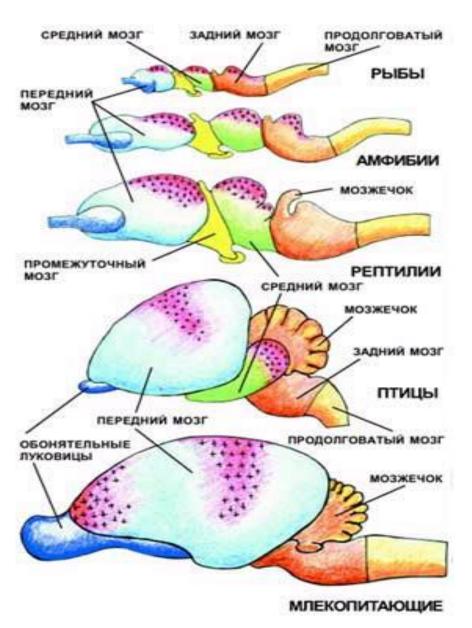
Обнаружена связь **гена FOXP2**, ассоциируемого с развитием речи у людей в эволюции, с характеристиками разных структур мозга (в первую очередь, нижней передней извилины, хвостатого ядра, мозжечка).

Нейротрофический фактор BDNF (brain-derived neurotrophic factor) играет важнейшую роль в формировании центральной нервной системы, участвуя в процессах <u>пролиферациии синаптического роста нейронов мозга</u>, а также в модуляции синаптических сигналов (например, в случае долговременной потенциации нейронов гиппокампа).

Замены валина на метионин в кодоне 66 гена BDNF (аллеля Val66Met) связывают с изменениями структурных и функциональных характеристик гиппокампа, которые, в свою очередь, влияют на показатели рабочей памяти у человека.

Аполипротеин плазмы крови АРоЕ - важный участник метаболических процессов, связанных с ростом, дегенерацией и регенерацией нервных клеток.

Связан с нормальным катаболизмом богатых триглицеридами составляющими липопротеинов. Было показано, что аллель АроЕ4 связан с генетическими рисками развития болезни Альцгеймера


Ген нейрегулина (NRG1) и ген рецептора нейрегулина (ErbB4) связывают с широким спектром проявлений патогенеза у больных шизофренией и биполярным расстройством.

Предполагается, что на структурном уровне эти процессы ассоциируются с изменениями в целостности белого вещества в переднем слое внутренней капсулы

Типы головного мозга позвоночных

Архипаллиум (archipallium; архи- + анат. pallium плащ большого мозга) – древняя кора филогенетически древняя часть обонятельного мозга, входящая в состав височной доли и представленная гиппокампом.

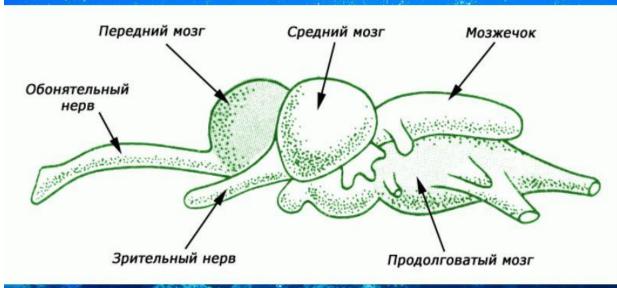
Впервые у рептилий появляется зачаток новой коры - неопаллиум

Ихтиопсидный тип мозга

Доминирует средний мозг 10 пар ЧМН Надкласс Pisces Класс Amphibia архипаллиум

Зауропсидный тип мозга

Доминирует передний мозг Класс Reptilia 11 пар ЧМН Класс Aves 12 пар ЧМН


Маммальный тип мозга

Класс Mammalia 12 пар ЧМН неопаллиум

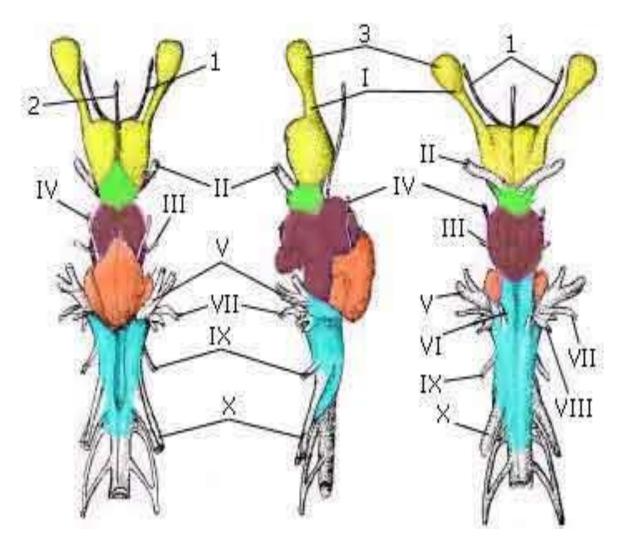
Ихтиопсидный тип мозга Надкласс Pisces

10 пар черепно-мозговых нервов

Головной мозг речного окуня.

 Головной мозг рыб подразделяется на передний, средний, промежуточный, продолговатый мозг и мозжечок. Передний мозг образует парные обонятельные доли. От промежуточного мозга отходят зрительные нервы.

ПЕРЕДНИЙ МОЗГ


- 1. Очень слабо развит
- 2. Отсутствует разделение на полушария
- 3. Содержит 1 желудочек (первый)
- 4. Крыша образована эпителиальными клетками
- 5. Центр обоняния. Обонятельные доли хорошо выражены.
- 6. Отходит 1 пара ЧМН
- У двоякодышащих рыб появляется **архипаллиум** и разделение головного мозга на полушария

промежуточный мозг

- 1. Слабо развит
- 2. Содержит эпифиз, гипоталамус, гипофиз и др. структуры
- 3. Содержит второй желудочек
- 4. Центр вегетативной нервной системы
- 5. Отходит 2 пара ЧМН

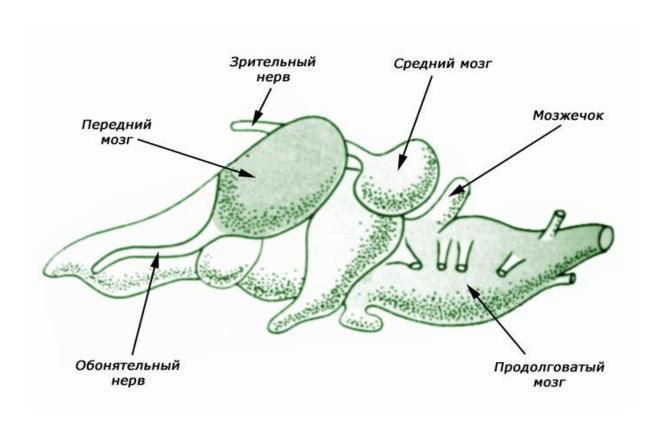
Ихтиопсидный тип мозга **Надкласс Pisces**

10 пар черепно-мозговых нервов

СРЕДНИЙ МОЗГ

- 1. Хорошо развит, главный отдел
- 2. Содержит зрительные доли, формируется двухолмие
- 3. Появляется теменной изгиб
- 4. Центр интеграции
- 5. Отходит 3 пара ЧМН

МОЗЖЕЧОК


- 1. Хорошо развит
- 2. Однодолевой (содержит червь)
- 3. Центр координации движений
- 4. Отходит 4 пара ЧМН

продолговатый мозг

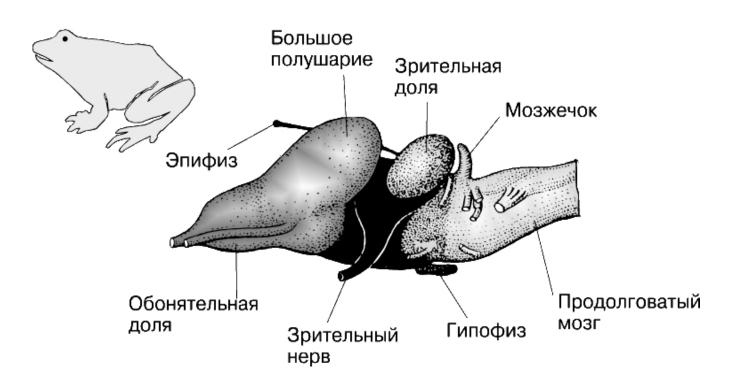
- 1. Хорошо развит
- 2. Центры дыхания и кровообращения
- 3. Центр «боковой линии» 4. Содержит третий желудочек
- 5. Отходят 5-10 пары ЧМН

Ихтиопсидный тип мозга Класс Amphibia

10 пар черепно-мозговых нервов

ПЕРЕДНИЙ МОЗГ

- 1. Слабо развит
- 2. Разделен на 2 полушария
- 3. Содержит 2 желудочка (первый и второй боковые)
- 4. Появление архипаллиума древней коры. Образована 1 слоем нейронов, покрытым эпителием
- 5. Центр обоняния.
- 6. Отходит 1 пара ЧМН


промежуточный мозг

- 1. Слаборазвит
- 2. Содержит эпифиз, гипоталамус, гипофиз и др. структуры
- 3. Содержит третий желудочек
- 4. Центр вегетативной нервной системы
- 5. Отходит 2 пара ЧМН

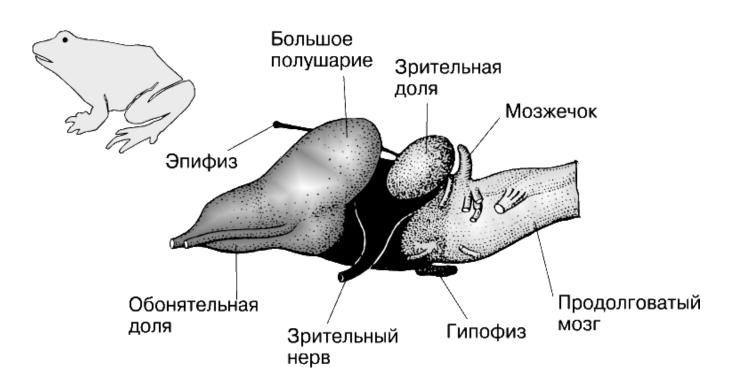
Ихтиопсидный тип мозга Класс Amphibia

10 пар черепно-мозговых нервов

АМФИБИИ ЛЯГУШКА

СРЕДНИЙ МОЗГ

- 1. Хорошо развит, главный отдел
- 2. Содержит двухолмие
- 3. Появляется мостовой изгиб
- 4. Центр интеграции
- 5. Отходит 3 пара ЧМН

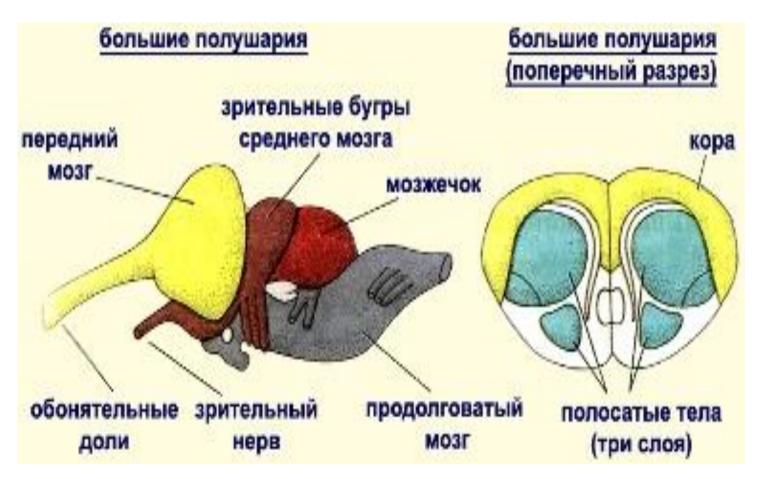

МОЗЖЕЧОК

- 1. Слабо развит
- 2. Однодолевой (содержит червь)
- 3. Центр координации движений
- 4. Отходит 4 пара ЧМН

Ихтиопсидный тип мозга Класс Amphibia

10 пар черепно-мозговых нервов

АМФИБИИ ЛЯГУШКА



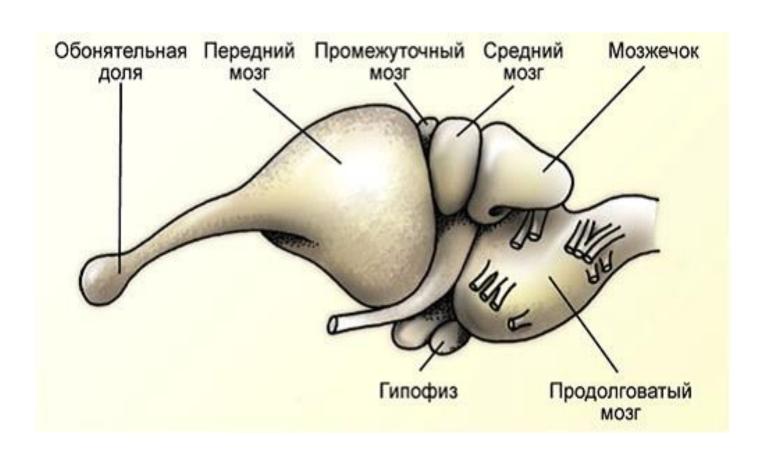
продолговатый мозг

- 1. Хорошо развит
- 2. Центры дыхания и кровообращения
- 3. Центр «боковой линии» функционирует на личиночной стадии
- 4. Содержит четвертый желудочек
- 5. Отходят 5-10 пары ЧМН

Зауропсидный тип мозга Класс Reptilia

11 пар черепно-мозговых нервов

ПЕРЕДНИЙ МОЗГ


- 1. Хорошо развит, главный отдел
- 2. Разделен на 2 полушария
- 3. Содержит 2 желудочка
- 4. Появление зачатков неопаллиума на боковых поверхностях полушарий.
- 5. Центр обоняния.
- 6. Отходит 1 пара ЧМН

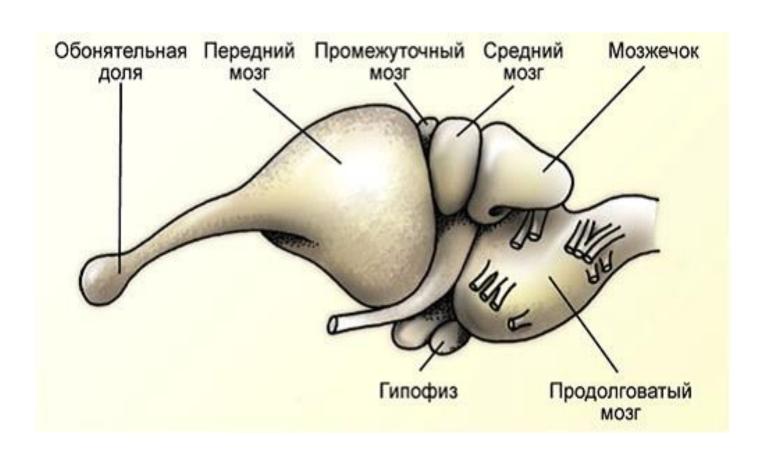
промежуточный мозг

- 1. Хорошо развит.
- 2. Содержит эпифиз, таламус гипоталамус, гипофиз и др. структуры
- 3. Содержит третий желудочек
- 4. Центр вегетативной нервной системы
- 5. Отходит 2 пар ЧМН

Зауропсидный тип мозга Класс Reptilia

11 пар черепно-мозговых нервов

СРЕДНИЙ МОЗГ

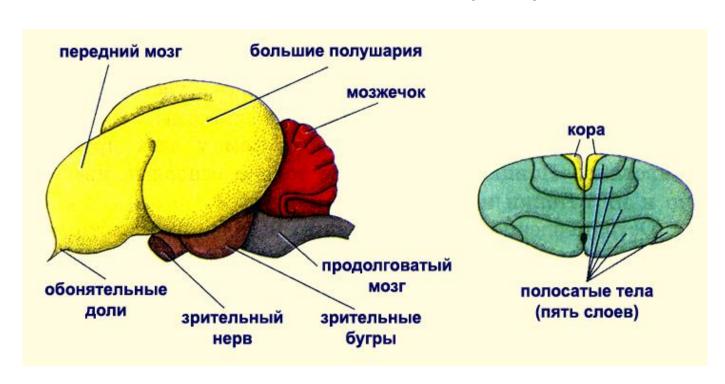

- 1. Хорошо развит
- 2. Центр зрительного анализатора
- 3. Двухолмие.
- 3. Центр поведенческих реакций.
- 4. Отходит 3 пара ЧМН

МОЗЖЕЧОК

- 1. Хорошо развит
- 2. Однодолевой (содержит червь)
- 3. Центр координации движений

Зауропсидный тип мозга Класс Reptilia

11 пар черепно-мозговых нервов

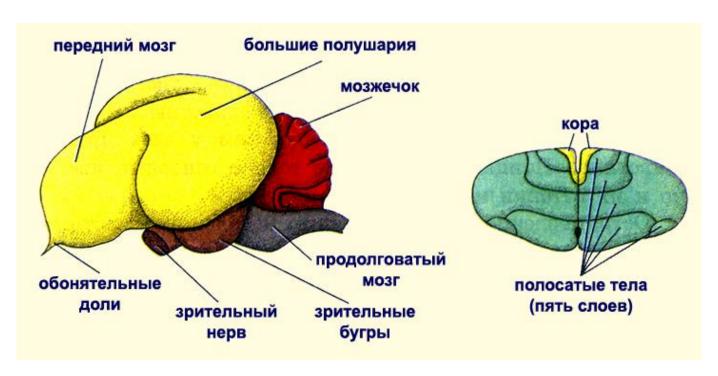


продолговатый мозг

- 1. Хорошо развит
- 2. Центры дыхания и кровообращения
- 3. Появление затылочного изгиба
- 4. Содержит четвертый желудочек
- 3. Отходят 4-11 пары ЧМН

Зауропсидный тип мозга Класс Aves

12 пар черепно-мозговых нервов

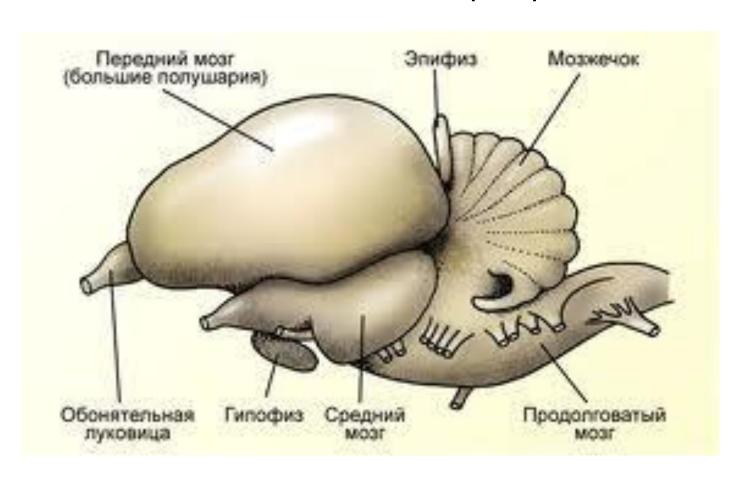


ПЕРЕДНИЙ МОЗГ

- 1. Хорошо развит, главный отделом
- 2. Разделен на 2 полушария, полушария увеличены в размерах за счет полосатых тел.
- 3. Содержит 2 боковых желудочка
- 4. Зачатки неопаллиума.
- 5. Центр обоняния, обонятельные доли выражены слабо.
- 6. Отходит 1 пара ЧМН

Зауропсидный тип мозга Класс Aves

12 пар черепно-мозговых нервов



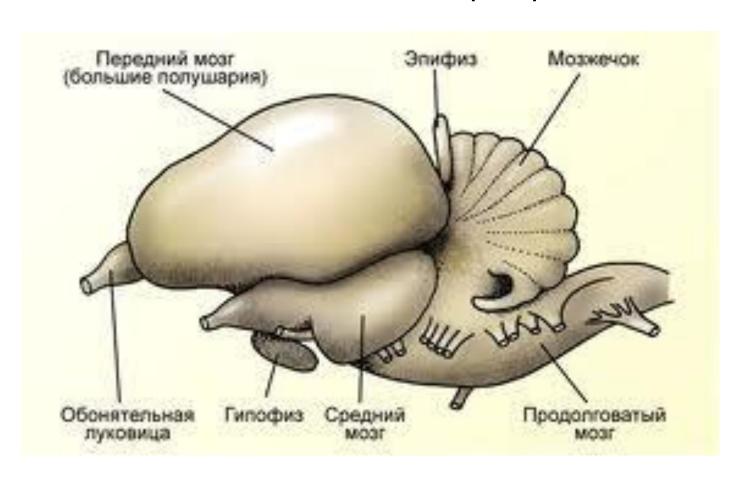
промежуточный мозг

- 1. Хорошо развит.
- 2. Содержит эпифиз, таламус гипоталамус, гипофиз и др. структуры
- 3. Содержит третий желудочек
- 4. Центр вегетативной нервной системы
- 5. Отходит 2 пара ЧМН

Зауропсидный тип мозга Класс Aves

12 пар черепно-мозговых нервов

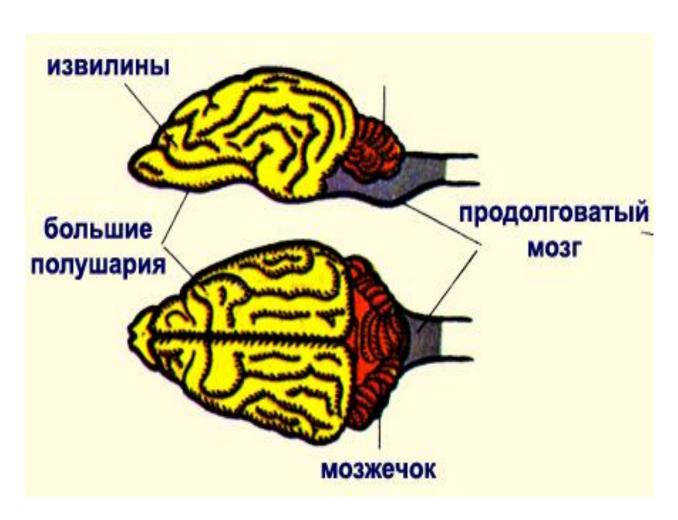
СРЕДНИЙ МОЗГ


- 1. Очень хорошо развит
- 2. Крупные зрительные доли
- 3. Двухолмие.
- 4. Центр поведенческих реакций.
- 4. Отходит 3 пара ЧМН

МОЗЖЕЧОК

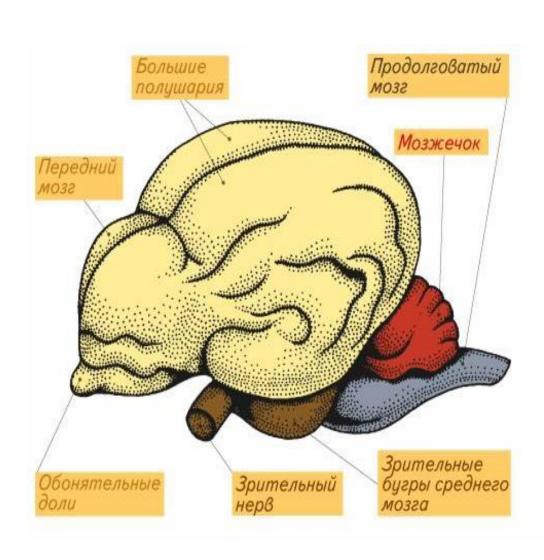
- 1. Очень хорошо развит
- 2. Содержит червь (одна доля) и парные боковые выступы
- 3. Центр координации движений

Зауропсидный тип мозга Класс Aves


12 пар черепно-мозговых нервов

ПРОДОЛГОВАТЫЙ МОЗГ

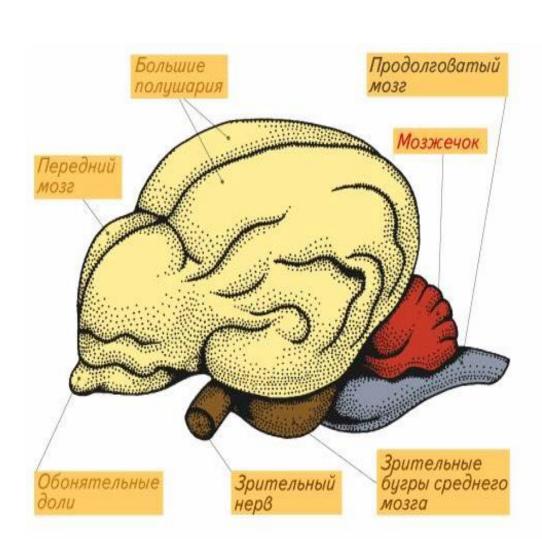
- 1. Хорошо развит
- 2. Центры дыхания кровообращения, терморегуляции
- 3. Содержит четвертый желудочек
- 4. Отходят 4-12 пары ЧМН


Маммальный тип мозга Класс Mammalia 12 пар черепно-мозговых нервов

ПЕРЕДНИЙ МОЗГ

- 1. Очень хорошо развит, является главным интегрирующим центром, у человека центр высшей нервной деятельности.
- 2. Разделен на 2 полушария, полушария увеличены в размерах.
- 3. Содержит 2 желудочка (первый и второй боковые)
- 4. Появление неопаллиума (6 слоев нейронов).
- 5. Появление борозд и извилин,
- 6. Центр обоняния, ядра 1 пара ЧМН

Маммальный тип мозга Класс Mammalia 12 пар черепно-мозговых нервов

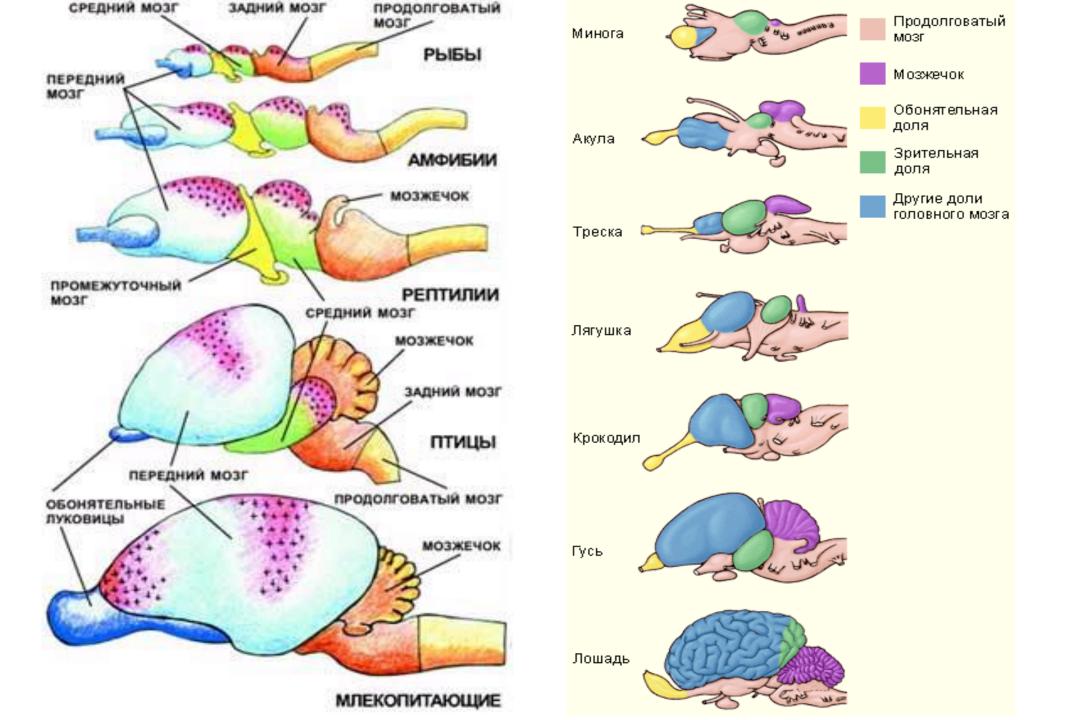

промежуточный мозг

- 1. Хорошо развит.
- 2. Содержит эпифиз, эпиталапмус, таламус, гипоталамус, гипофиз и др. структуры
- 3. Содержит третий желудочек
- 4. Центр вегетативной нервной системы
- 5. Ядра 2 пары ЧМН

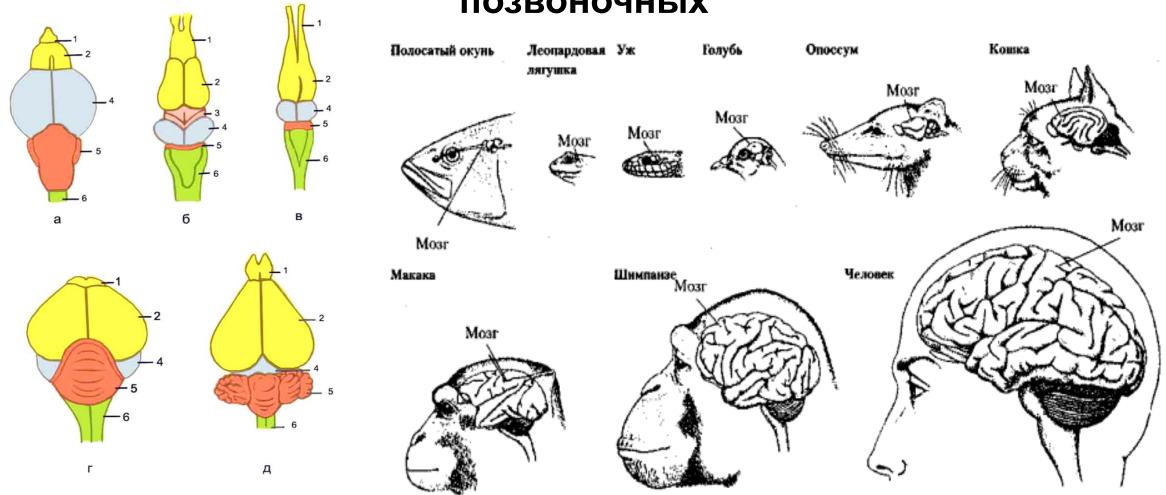
СРЕДНИЙ МОЗГ

- 1. Очень хорошо развит
- 2. Крупные зрительные доли
- 3. Крыша образует четверохолмие.
- 4. Содержит ядра 3-4 пар ЧМН

Маммальный тип мозга Класс Mammalia 12 пар черепно-мозговых нервов



МОЗЖЕЧОК


- 1. Очень хорошо развит
- 2. Трехдолевой (содержит червь и 2 боковые доли)
- 3. Центр координации движений
- * Мост содержит ядра 5-8 пар ЧМН

продолговатый мозг

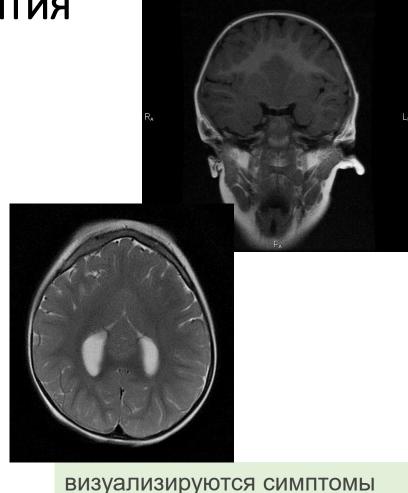
- 1. Хорошо развит
- 2. Центры дыхания кровообращения, терморегуляции
- 3. Содержит четвертый желудочек
- 4. Содержит ядра 9, 10, 12 пар ЧМН
- * Ядра 11 пары ЧМН находятся в C1-C4сегментах

Сравнительная анатомия головного мозга позвоночных

Основные направления эволюции головного мозга

- 1. Увеличение относительных размеров головного мозга
- 2. Дифференцировка его отделов, качественные преобразования
- 3. Преимущественное развитие переднего мозга как отражение цефализации.

Онтофилогенетические аномалии развития головного мозга у человека


Основной механизм возникновения онтофилогенетических аномалий развития головного мозга — **рекапитуляции** (появление признаков предковых форм).

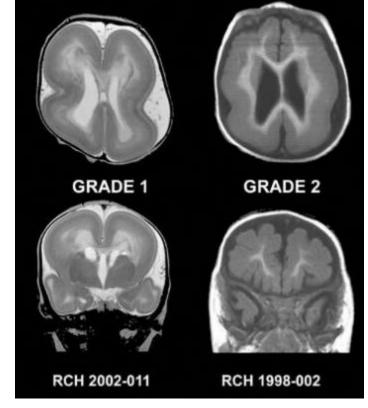
Пример- аномалии переднего мозга <u>прозенцефалия/</u>
<u>Голопрозэнцефалия :</u>

Нарушается морфогенез мозга:

- □ отсутствие полушарий при сохранении черепа;
- □ отсутствие дифференцировки на два полушария или неполное деление на полушария;
- □ недоразвитие коры,

порок развивается на 4 неделе эмбрионального развития в момент закладки переднего мозга и несовместим с жизнью.

визуализируются симптомы нерасщеплённого мозга: отсутствие межполушарной щели, деформация боковых желудочков.


Онтофилогенетические аномалии развития

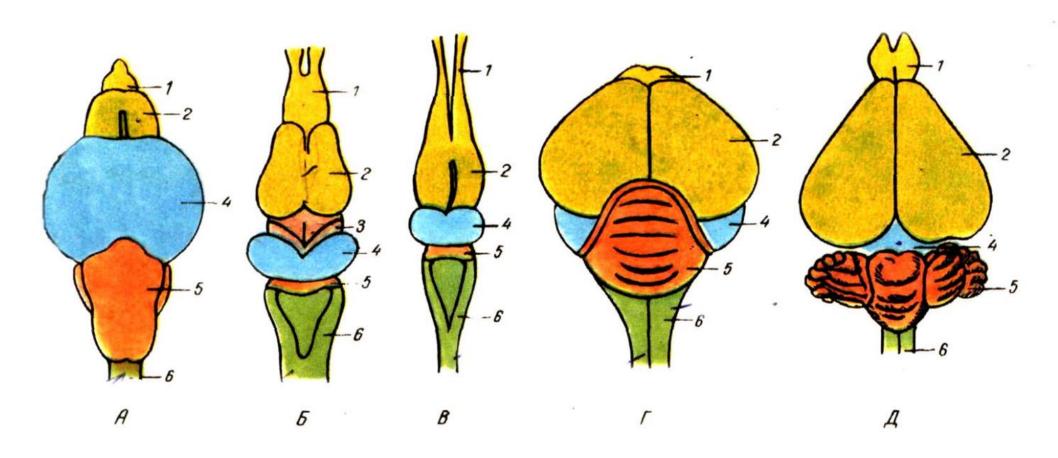
головного мозга у человека

Агирия — отсутствие извилин

Пахигирия — врожденный порок мозга, приводящий к нарушению сулькуляции (образования борозд) и формированию аномальных утолщенных извилин.

Лиссэнцефалия — сглаженности коры головного мозга, без борозд, только с основными щелями. Как правило, дети с данным пороком имеют задержку развития и страдают от эпилепсии, начало и тяжесть которой, зависит от степени поражения коры головного мозга.

https://rentgenogram.ru/articles/pachygyria-lissencephaly/

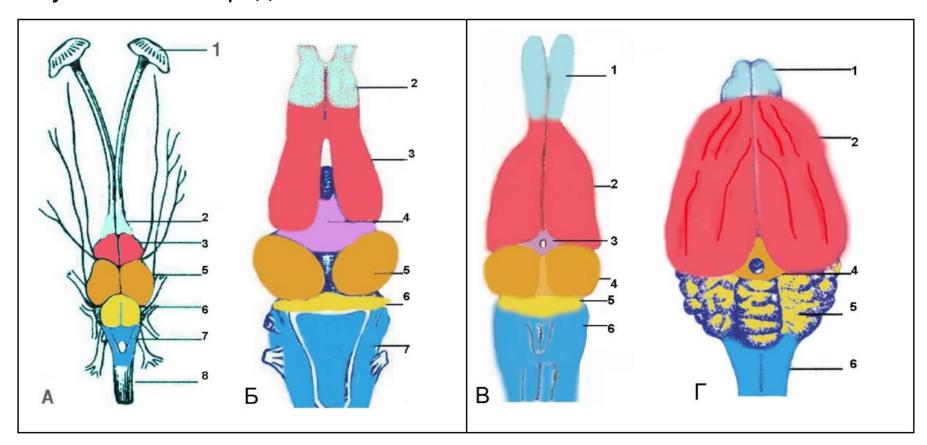

вызвана расстройством процесса миграции нейронов плода из-за генетических или, возможно, экологических воздействий.

Неполная миграция нейронов во время раннего развития мозга плода, гетеропия

Основные эволюционные преобразования нервной системы у человека

- **1.** Дифференцировка спинного мозга в соответствии с сегментами туловища, редукция его нижнего отдела в связи с исчезновением хвоста и формированием парных задних конечностей.
- **2. Субституция** замещение ихтиопсидного типа головного мозга позвоночных более прогрессивным зауропсидным, а затем маммалийным. Замещение старой коры (архикортекса) новой корой (неокортексом).
- 3. Увеличение числа нейронов и синапсов: приводит к усилению главной координирующей функции НС, что способствует большей сложности обработки информации и улучшению когнитивных функций, усложнения, дифференцировки, появления новых отделов и центров.
- 4. Увеличение объема мозга.
- **5. Разделение функций полушарий**: У человека наблюдается выраженная асимметрия между правым и левым полушариями мозга. Левое полушарие обычно отвечает за речевые и аналитические функции, тогда как правое за пространственное восприятие и творчество.
- **6. Развитие лимбической системы**: Эта часть мозга, отвечающая за эмоции и память, также претерпела изменения, что позволило лучше адаптироваться к социальным взаимодействиям и эмоциональным реакциям.

• Задание 1. Изучите на муляжах и рисунке строение головного мозга представителей разных классов позвоночных животных. Определите к какому типу относится головной мозг. Ответ поясните



Эволюция головного мозга позвоночных: а - рыба; б - земноводное; в - пресмыкающееся; г - млекопитающее; 1 - обонятельные доли; 2 - передний мозг; 3 - средний мозг; 4 - мозжечок; 5 - продолговатый мозг; 6 - промежуточный мозг

Задание 2. Рассмотрите основные ароморфозы в эволюции головного мозга классов позвоночных животных с помощью муляжей.

Зарисуйте в тетрадь схемы строения головного мозга: I — рыб; II - амфибий; III - рептилий; IV - млекопитающих; соблюдая имеющиеся соотношения основных отделов. Введите обозначения.

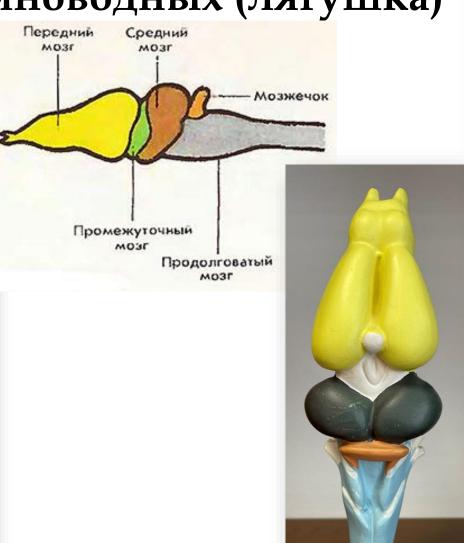
• Обратите внимание на филогенетические изменения в соотношениях отделов головного мозга, уменьшение размеров обонятельных долей, увеличение полушарий переднего мозга, уменьшение среднего мозга.

- 1 обонятельные луковицы;
- 2 обонятельные доли;
- 3 передний мозг;
- 4 промежуточный мозг;
- 5 средний мозг;
- 6 мозжечок;
- 7 продолговатый мозг;
- 8 спинной мозг.

Одноименные отделы головного мозга у представителей различных классов выделены на рисунках одним цветом.

Изучаемый препарат:

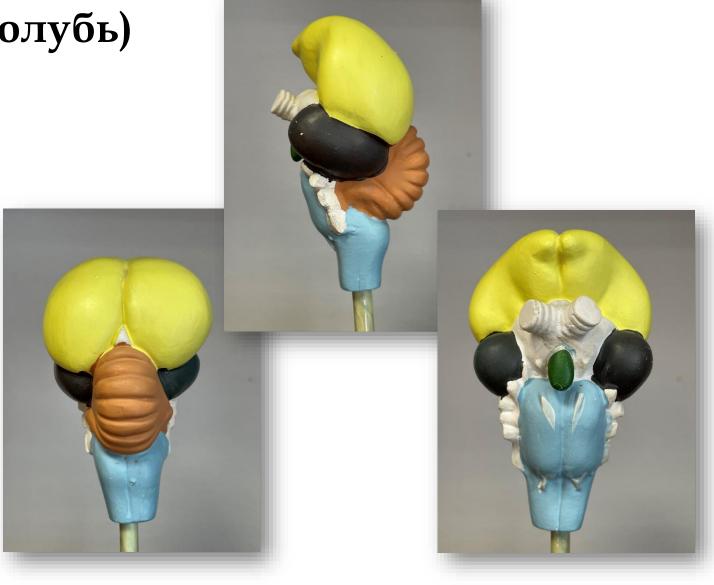
Головной мозг костистой рыбы (Щука)



Изучаемый препарат:

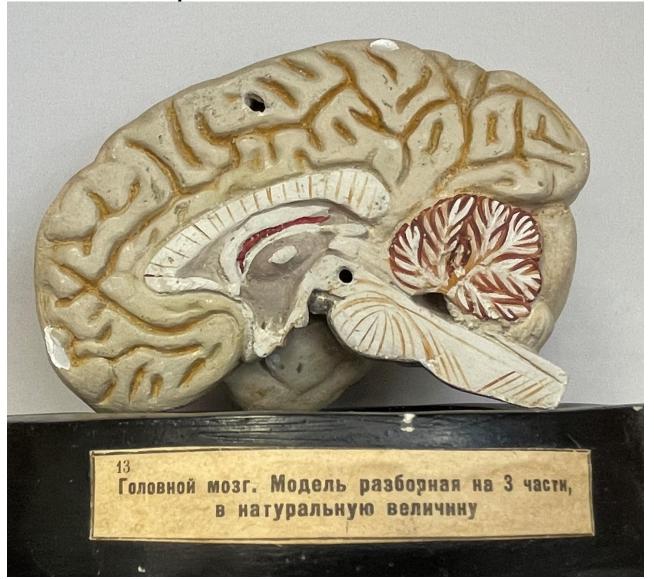
Головной мозг земноводных (лягушка)

Изучаемый препарат: Головной мозг пресмыкающихся (ящерицы)



Изучаемый препарат: Головной мозг птицы (голубь)

Изучаемый макропрепарат препарат: Головной мозг млекопитающего (краса)



• Задание 3. Заполните таблицу «Особенности строения различных отделов головного мозга позвоночных

			Характеристика отделов головного мозга				
Классы позвоночных	Тип головного мозга	Ведущий отдел головного мозга	передний	промежуто чный	средний	продолгова тый	мозжечок
Рыбы							
Амфибии							
Рептилии							
Птицы							
Млекопитающие							

Задание 4. Изучить муляж и макропрепарат головного мозга человека. Отметить особенности строения.

Литература

- 1. Биология: учебник: в 2 т./ под ред. В.Н. Ярыгина. М.: ГЭОТАР-Медиа, 2011. Т.2. 736 с.
- 2. Биология. Руководство к лабораторным занятиям: учебное пособие/Под ред. Н.В. Чебышева. 2-е изд., М.: ГЭОТАР-Медиа, 2011. 284 с.
- 3. Биология: руководство к практическим занятиям: учебное пособие/ под ред. В.В. Маркиной. М.: ГЭОТАР-Медиа, 2010. 448 с.
- 4. Перевозникова Т. В., Шляхтин Г. В. Функциональная организация нервной системы: гистология, анатомия, эмбриогенез, эволюция (межпредметные аспекты). II часть. Нервная система беспозвоночных и хордовых животных. Учебно-методическое пособие для студентов биологических факультетов. -Саратов: ООО Амирит, 2021. –87 с.: ил.

