КАЗАНСКИЙ ГОСУДАРСТВЕННЫЙ МЕДИЦИНСКИЙ УНИВЕРСИТЕТ

Гомеостаз и его виды. Механизмы поддержания гомеостаза

Лекция. Тема 1.1.

для студентов 2 курса, обучающихся по специальности «Лечебное дело» (ИОП)

Лектор Доцент кафедры медицинской биологии и генетики, к.б.н. Кошпаева Е.С.

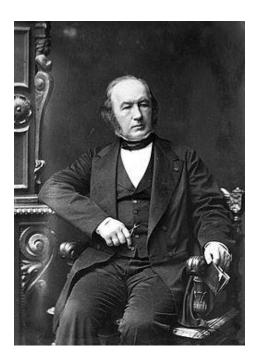
Кафедра медицинской биологии и генетики

План

- 1. Введение
- 2. Основные виды гомеостаза
 - Физиологический
 - Клеточный
 - Генетический
 - Экологический
- 3. Механизмы гомеостаза: принцип обратной связи
- 4. Эволюция гомеостатических механизмов. Адаптация к разным средам
- 5. Генетические основы гомеостаза на уровне регуляции экспрессии генов и на уровне генома
- 6. Механизмы поддержания гомеостаза
 - Нервная регуляция (гипоталамо-гипофизарная система).
 - Гуморальная регуляция (гормоны, цитокины).
- 7. Заключение

Введение в понятие гомеостаза.

Гомеостаз — это фундаментальное свойство живых организмов, обеспечивающее <u>постоянство внутренней среды</u> вопреки изменениям внешних условий.


Термин **«гомеостаз»** (от греч. *homoios* — подобный, *stasis* — стояние) был предложен американским физиологом **Уолтером Кэнноном** в 1932 году.

Сама концепция восходит к работам **Клода Бернара**, который ввел понятие **«постоянство внутренней среды»** (*milieu intérieur*) (1850-е гг.).

«Постоянство внутренней среды — залог свободной и независимой жизни» (формулировка Клода Бернара)

Уолтер Брэдфорд Кеннон

Клод Бернар

Вклад Уолтера Кэннона

организм — это **саморегулирующаяся система**, способная поддерживать стабильность ключевых параметров

Основные открытия:

- Роль симпатической нервной системы в поддержании стабильности (например, реакция «бей или беги»).
- Механизмы отрицательной обратной связи (на примере регуляции уровня глюкозы).
- Концепция «стресса» (позже развитая Гансом Селье).

Ключевые аспекты гомеостатической регуляции по Кэннону

- Динамическое равновесие постоянные колебания параметров в узких пределах (например, рН крови = 7,35–7,45).
- Отрицательная обратная связь механизм, при котором отклонение от нормы запускает процессы коррекции (например, выделение инсулина при повышении глюкозы).
- Согласованная работа систем взаимодействие нервной, эндокринной и других систем для поддержания стабильности.
- Адаптация к изменениям способность организма приспосабливаться к внешним воздействиям без потери устойчивости.

Контролируемые параметры:

- температуры тела,
- уровня глюкозы в крови,
- кислотно-щелочного баланса (pH),
- концентрации электролитов,
- артериального давления и др.

Примеры гомеостатических механизмов

Терморегуляция:

при перегреве включается потоотделение, при охлаждении — дрожь.

Осморегуляция:

почки регулируют уровень воды и солей.

Регуляция уровня кислорода: частота дыхания изменяется в зависимости от потребностей тканей.

Вклад Уолтера Кэннона

Эксперименты Кэннона

1. Исследование симпатической нервной системы

- « Кэннон обнаружил, что при повреждении нервов, идущих к внутренним органам, животные теряли способность адаптироваться к стрессу (например, к холоду или кровопотере).
- 。 Вывод: симпатическая система **мобилизует ресурсы** (ускоряет сердцебиение, сужает сосуды, стимулирует выброс глюкозы).

2. Денервация органов

 Удаляя симпатические нервы у животных, Кэннон показал, что без них нарушается регуляция температуры и обмена веществ.

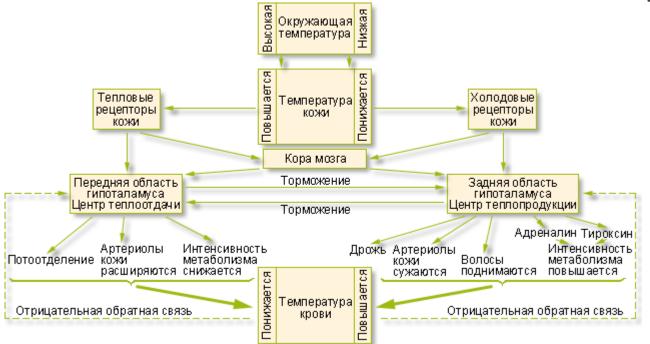
3. Реакция на адреналин

 Он доказал, что адреналин (эпинефрин) — ключевой гормон, выделяемый мозговым веществом надпочечников, обеспечивает быструю адаптацию к угрозам.

Виды гомеостаза классифицируют по 1) уровню регуляции и 2) объекту регуляции,

Выделяют:

- Генетический гомеостаз: поддержание генетической стабильности и постоянства ДНК.
- Структурный гомеостаз: связан с сохранением постоянства формы и структуры клеток, тканей и органов.
- Системный гомеостаз (гомеостаз внутренней среды): обеспечивает стабильность химического состава, физических свойств и других показателей внутренней среды организма (крови, лимфы, тканевой жидкости).
- Иммунологический гомеостаз: направлен на защиту организма от чужеродных агентов, таких как вирусы и бактерии.
- Физиологический гомеостаз: регулируемый нервной и эндокринной системами, например, поддержание температуры тела, уровня глюкозы и водного баланса


Основные виды гомеостаза

- **.** Физиологический
- Клеточный
- Генетический
- Экологический

Физиологический гомеостаз обеспечивает стабильность внутренней среды целого многоклеточного организма (гуморальной и метаболической среды).

Его механизмы реализуются через деятельность нервной и эндокринной систем.

Пример: Терморегуляция (поддержание постоянной температуры тела):

Общая схема регуляции температуры тела у млекопитающих

«Регуляторным центром» температуры является <u>гипоталамус</u>. Он следит за температурой крови, а благодаря 150 000 холодовых и 16 000 тепловых рецепторов, разбросанных по коже, — и за внешней температурой.

Способы теплообмена можно разделить на четыре типа: излучение, конвекция, теплопроводность, испарение.

У наземных животных около половины теплоотдачи приходится на излучение

Основные виды гомеостаза

- Физиологический (системный)
- Клеточный
- Генетический
- Экологический

Регулирующие органы (лёгкие и почки):

- •Лёгкие: Если рН становится слишком низким (ацидоз), лёгкие начинают интенсивно выдыхать углекислый газ, который является кислотным продуктом метаболизма, тем самым снижая кислотность крови.
- •Почки: Если рН становится слишком высоким (алкалоз), почки увеличивают выведение кислот с мочой, а также всасывают больше бикарбоната из плазмы для нейтрализации щелочности.

Пример: Регуляция рН крови (кислотно-щелочное равновесие):

Системный гомеостаз - гомеостаз жидкой части внутренней среды организма определяет постоянство состава крови, лимфы, тканевой жидкости, осмотического давления, общей концентрации электролитов и концентрации отдельных ионов, содержания в крови питательных веществ и т.д.

Эти показатели даже при значительных изменениях условий внешней среды удерживаются на определенном уровне.

Буферные системы крови:

- **Бикарбонатная** состоит из угольной кислоты, бикарбонатов натрия и калия
- Фосфатная состоит из смеси однозамещенного и двузамещенного фосфата натрия,
- Белков плазмы крови (за чет амфотерности),
- Гемоглобиновая (составляет примерно 75% всех буферных систем крови) гемоглобин в восстановленном виде является очень слабой кислотой, в окисленном более сильной кислотой.

Основные виды гомеостаза

- Физиологический (системный)
- Клеточный
- Генетический
- Экологический

Регулирующие органы (лёгкие и почки):

- •Лёгкие: Если рН становится слишком низким (ацидоз), лёгкие начинают интенсивно выдыхать углекислый газ, который является кислотным продуктом метаболизма, тем самым снижая кислотность крови.
- •Почки: Если рН становится слишком высоким (алкалоз), почки увеличивают выведение кислот с мочой, а также всасывают больше бикарбоната из плазмы для нейтрализации щелочности.

Пример: Регуляция рН крови (кислотно-щелочное равновесие):

Кислотность артериальной крови поддерживается в узком диапазоне (pH = 7,35–7,45). Отклонения (ацидоз или алкалоз) критически опасны для ферментативной активности и структуры белков.

Регуляция рН крови (кислотно-щелочного равновесия) с помощью обратной связи осуществляется через буферные системы крови и работу лёгких и почек.

Буферные системы крови:

- **Бикарбонатная** состоит из угольной кислоты, бикарбонатов натрия и калия
- Фосфатная состоит из смеси однозамещенного и двузамещенного фосфата натрия,
- Белков плазмы крови (за чет амфотерности),
- Гемоглобиновая (составляет примерно 75% всех буферных систем крови) гемоглобин в восстановленном виде является очень слабой кислотой, в окисленном более сильной кислотой.

Основные виды гомеостаза

- Физиологический (системный)
- Клеточный
- Генетический
- Экологический

Пример: Регуляция рН крови (кислотно-щелочное равновесие):

Кислотность артериальной крови поддерживается в узком диапазоне (pH = 7,35–7,45). Отклонения (ацидоз или алкалоз) критически опасны для ферментативной активности и структуры белков.

Регуляция рН крови (кислотно-щелочного равновесия) с помощью обратной связи осуществляется через буферные системы крови и работу лёгких и почек.

Пример ацидоза (рН < 7.35):

- 1. рН крови становится ниже нормы.
- 2. Центр управления в мозге посылает сигнал в лёгкие.
- 3. Лёгкие увеличивают частоту и глубину дыхания, выдыхая больше CO2.
- 4. Снижается уровень угольной кислоты, и рН крови повышается до нормальных значений.

Пример алкалоза (рН > 7.45):

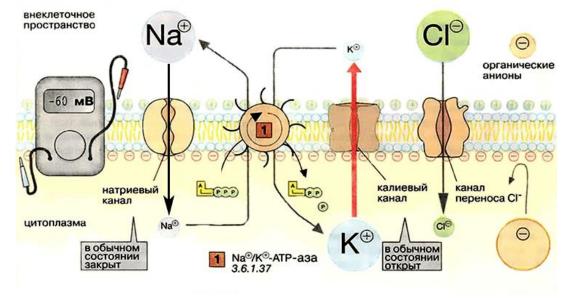
- 1. рН крови становится выше нормы.
- 2. Почки увеличивают выведение кислот и реабсорбцию бикарбоната.
- 3. Лёгкие замедляют дыхание, удерживая CO2 для снижения pH крови.

Пример: При интенсивной физической нагрузке в кровь поступает избыток молочной кислоты (лактата). Буферные системы крови (бикарбонатная, фосфатная, белковая) связывают избыток ионов Н⁺. Одновременно учащается дыхание (гипервентиляция), что ведет к выведению СО₂ и снижению угольной кислоты в крови. Почки усиливают экскрецию Н⁺ и реабсорбцию бикарбоната (НСО₃⁻)

Основные виды гомеостаза

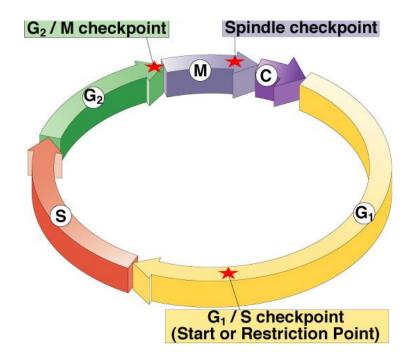
- Физиологический
- Клеточный
- Генетический
- Экологический

•Поддержание мембранного потенциала покоя:


Мембранный потенциал является фундаментальным свойством возбудимых клеток (нейроны, мышечные волокна).

• Пример: В состоянии покоя внутренняя сторона мембраны нейрона заряжена отрицательно относительно внешней (примерно -70 мВ). Этот потенциал покоя формируется прежде всего за счет утечки ионов К⁺ из клетки по концентрационному градиенту через постоянно открытые калиевые каналы. Работа Na⁺/K⁺-АТФазы не создает потенциал напрямую, но поддерживает концентрационные градиенты, делающие его возможным

•Ионный баланс:


Концентрации ключевых ионов (K⁺, Na⁺, Ca²⁺, Cl⁻) внутри клетки радикально отличаются от внеклеточной среды. Это различие критически важно для многих процессов.

• Пример: Концентрация К⁺ внутри клетки высока, а снаружи — низка. Напротив, концентрация Na⁺ высока снаружи и низка внутри. Этот градиент поддерживается работой Na⁺/K⁺-ATФазы (натрий-калиевого насоса) — трансмембранного белка, который в активном транспорте, используя энергию АТФ, "выкачивает" 3 иона Na⁺ из клетки и "закачивает" 2 иона К⁺ внутрь против их концентрационных градиентов.

Основные виды гомеостаза

- Физиологический
- **.** Клеточный
- Генетический
- Экологический

Клеточный гомеостаз осуществляет взаимосвязь между тремя процессами в клетке:

- 1) Пролиферацией клеток,
- 2) Дифференцировкой клеток,

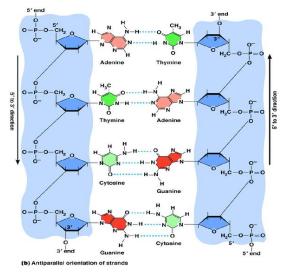
Основные виды гомеостаза

- Физиологический
- Клеточный
- Генетический
- Экологический

Это совокупность молекулярных механизмов, обеспечивающих стабильность генетического материала (ДНК), его точную репликацию и репарацию возникающих повреждений. Нарушения этого вида гомеостаза лежат в основе мутагенеза и канцерогенеза.

	Способы поддержания генетического гомеостаза	Значение способа	Механизмы нарушений генетического гомеостаза
	Генетическая стабильность молекулы ДНК	Репарация ДНК- набор ферментов репарации осуществляет осмотр ДНК, удаляя поврежденные участки.	1. Наследственное и ненаследственное повреждение репаративной системы. 2. Функциональная недостаточность репаративной системы
	Диплоидность соматических клеток	Двойная генетическая программа подавляет фенотипические проявления большинства рецессивных мутаций.	1.Нарушение формирования веретена деления. 2.Нарушение расхождения хромосом
	Вырожденность генетического кода	64% замен 3-го нуклеотида не дает изменений смыслового значения	Мутации со сдвигом считывания наследственной информации, без сдвига считывания наследственной информации.
	экстракопировани е генов	Способствует сохранению генетической стабильности	Транслокации, дупликации, инверсия, делеция

Репарация ДНК

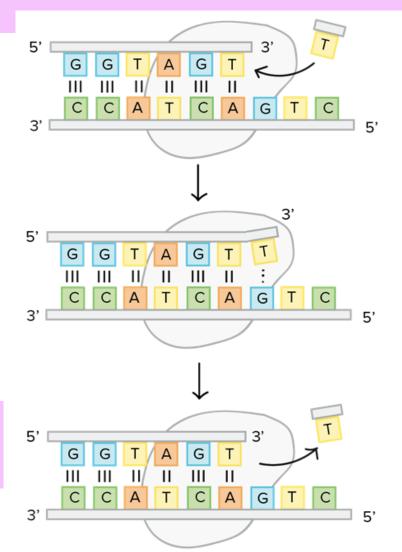

Репарация — процесс восстановления исходной нативной структуры ДНК

Для ДНК характерно:

- Наличие большого количества репарационных систем
- В клетках имеются специальные белки, «патрулирующие» ДНК и осуществляющие поиск дефектов
- Большинство репарационных систем удаляет не только сами поврежденные нуклеотиды, но и находящиеся рядом участки
- ДНК имеет две цепи, поэтому, вторая неповрежденная цепь служит матрицей для восстановления целостной молекулы ДНК

Пути репарации

- Прямое возвращение к исходному состоянию
- Вырезание поврежденного участка и замена на нормальный фрагмент
- Рекомбинационное восстановление в обход поврежденного участка


включает в себя системы, которые непосредственно устраняют повреждение ДНК

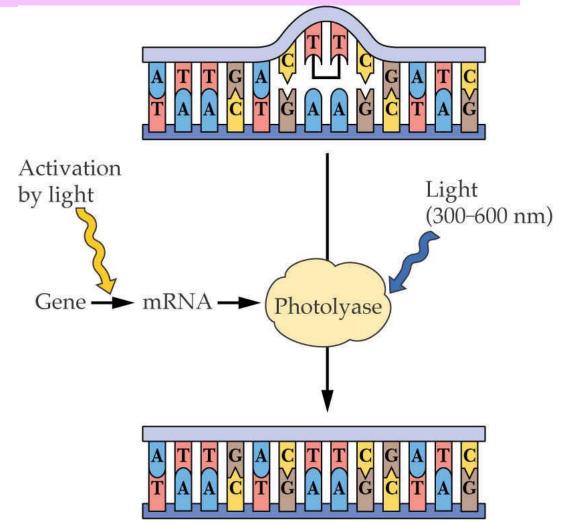
сразу после его возникновения.

1. Самокоррекция или молекулярное редактирование ДНК-текста («proofreading»)

3'→ 5' экзонуклеазная активность ДНК-полимеразы во время репликации ДНК. Коррекция неправиль вставленных оснований происходит непосредственно во время репликации ДНК

При прямой репарации нуклеотиды не вырезаются

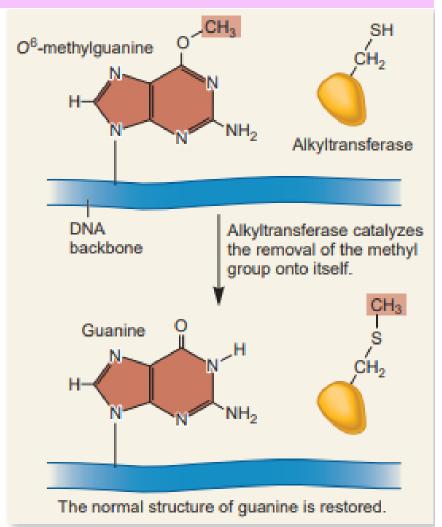
ДНК-полимераза вставляет неправильный нуклеотид в новую цепь ДНК


ДНК-полимераза обнаруживает некорректность спаривания

ДНК-полимераза использует 3 '→ 5' экзонуклеазную активность и удаляет неправильно встроенный нуклеотид

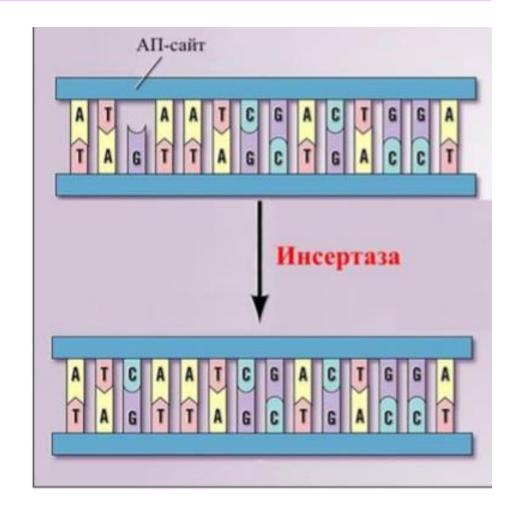
включает в себя системы, которые непосредственно устраняют повреждение ДНК сразу после его возникновения.

2. Фотореактивация - это механизм, с помощью которого прокариотические организмы с помощью фермента фотолиазы распознают пиримидиновые димеры, продуцируемые УФ-светом.


Фотолиаза связывается с димером тимина и использует световую энергию для разрыва ковалентных связей между пиримидинами, заставляя их повторно дополняться антипараллельной цепью.

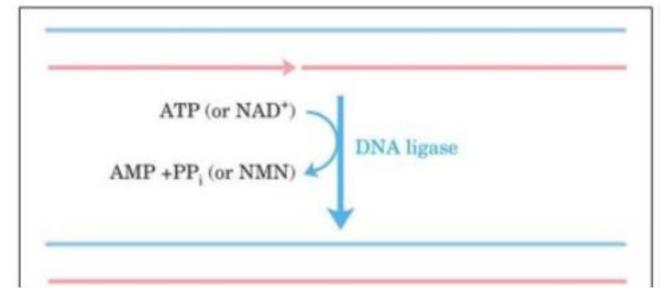
включает в себя системы, которые непосредственно устраняют повреждение ДНК сразу после его возникновения.

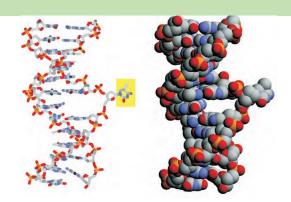
3. Прямая репарация метилированных оснований


Об-метилгуанин-ДНК-метилтрансфераза снимает метильную группу с азотистого основания на один из собственных остатков цистеина.

включает в себя системы, которые непосредственно устраняют повреждение ДНК сразу после его возникновения.

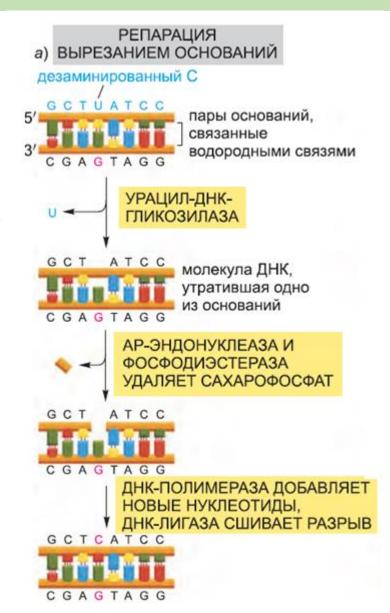
4. Прямая репарация АП-сайтов прямой вставкой пуринов


Инсертаза может вставлять в «брешь» комплементарное азотистое основание. Фосфодиэфирный остов при этом не поврежден


включает в себя системы, которые непосредственно устраняют повреждение ДНК сразу после его возникновения.

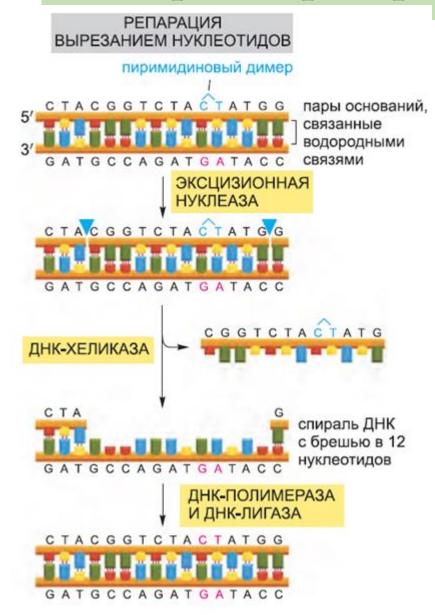
5. Прямая репарация однонитевых разрывов ДНК

ДНК-лигаза восстанавливает фосфодиэфирную связь между разорванной цепью (при однонитевом разрыве, индуцированном ионизирующим излучением)


2. Непрямая репарация. Эксцизионная репарация (BER)

Узнавание необычного нуклеотида в ДНК ходе «выпячивания оснований»

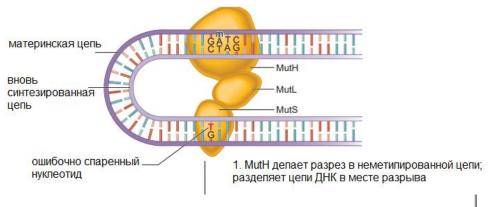
Ферменты из семейства **ДНК-гликозилаз** специфически узнают основания в показанной конформации.

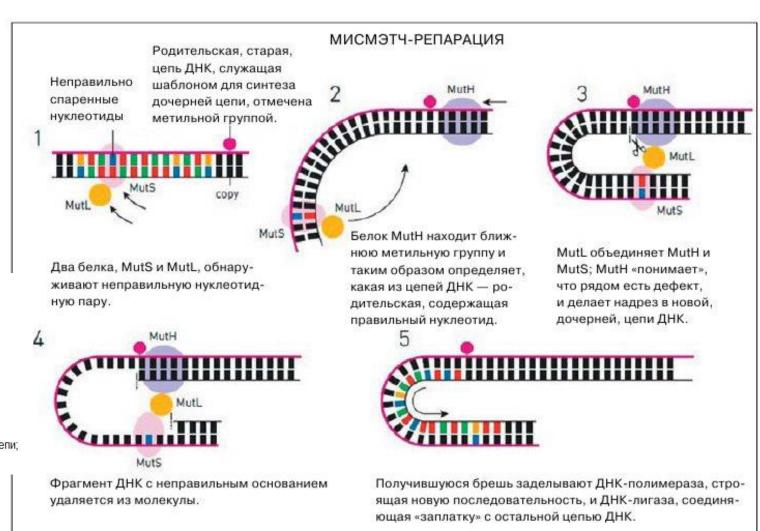

Каждый из этих ферментов расщепляет гликозильную связь, которая соединяет специфически узнаваемое основание (желтое) с сахаром основной цепи, и удаляет это основание из ДНК

Экссцизионная репарация оснований включает:

- 1. ДНК-гликозилаза разрезает гликозидную связь и удаляет азотистое основание, образуется АР-сайт
- 2. **АР- эндонуклеаза** гидролизует 5'-концевую фосфодиэфирную связь в АР-сайте; **АР-лиаза** гидролизует 3'конец
- **3.** ДНК-полимераза застраивает «брешь», добавляя нуклеотид по принципу коплементарности
- **4.** ДНК-лигаза соединяет разрыв, восстанавливая фосфодиэфирную связь

2. Непрямая репарация. Эксцизионная репарация (NER)




Процесс NER (эксцизионная репарация нуклеотидов) условно можно разделить на четыре этапа:

- 1. Распознавание поврежденного участка ДНК;
- 2. Двойное надрезание (инцизия) цепи ДНК по обеим сторонам поврежденного участка и его удаление (эксцизия);
- 3. Заполнение бреши в процессе репаративного синтеза;
- 4. Лигирование оставшегося одноцепочечного разрыва ДНК.

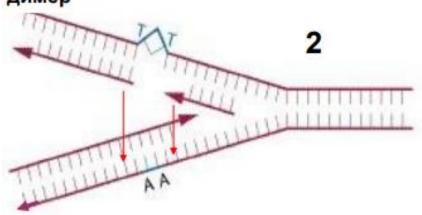
2. Непрямая репарация. Mismatch репарация

Мисмэтч-репарация исправляет ошибки, возникающие в результате репликации и рекомбинации: нарушения комплементарности пар А-Т или Г-Ц в дочерней цепи при включении в них некомплементарных нуклеотидов.

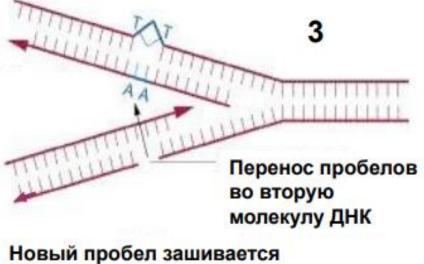
2. Непрямая репарация. Mismatch репарация

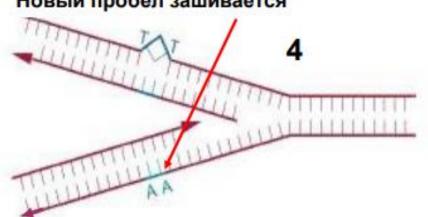
- ✓ В отличие от **NER**, так же удаляющей неправильно спаренные основания, **MMR** может идентифицировать нуклеотид какой цепи ДНК является правильным (способна обнаруживать матрицу для репарации).
- ✓ Субстратами системы MMR у E. coli, использующей белки MutHLS являются все некомплементарные пары оснований за исключением С–С, а также небольшие вставки в одну из цепей ДНК, длина которых не превышает четырех нуклеотидов.

Система MMR выполняет в клетке несколько важных функций:


- 1. Исправляет ошибки репликации ДНК, меняя ошибочно включенные нуклеотиды.
- 2. Обеспечивает гомологичную рекомбинацию между дивергировавшими последовательностями ДНК, посредством процессинга промежуточных продуктов рекомбинации.
- 3. Обеспечивает задержку клеточного цикла в ответ на повреждения ДНК.

3. Рекомбинационная (пострепликативная) репарация.


Повреждение возникает в ДНК еще до начала репликации



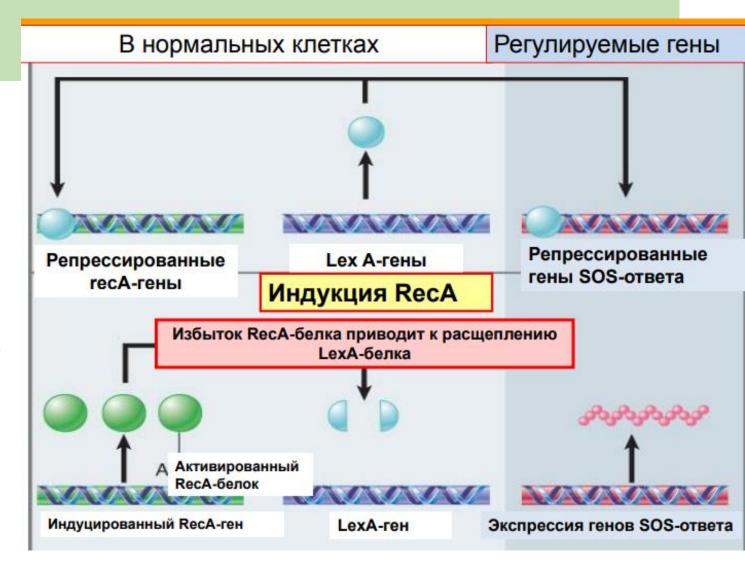
ДНК-полимераза обходит тиминовый димер

Неповрежденная цепь ДНК в отреплицированной молекуле рекомбинирует с поврежденной

одноцепочечные бреши, заполняемые в процессе гомологичной рекомбинации при помощи **белка RecA**

Это единственный тип репарации, не имеющий этапа узнавания повреждения

4. SOS- репарация


SOS – репарация — форма индуцированной репарации, проявляющейся в способности клетки реагировать на большие повреждения ДНК (SOS-ответ).

Сигналом для SOS-репарации является повреждение ДНК, препятствующие репликации ДНК и клеточному делению.

Основные ферменты:

- Rec A
- Lex A

Начало SOS-ответа: взаимодействие белка RecA с белком-репрессором LexA

SOS-система была открыта и названа в 1975 году Мирославом Радманом у кишечной палочки

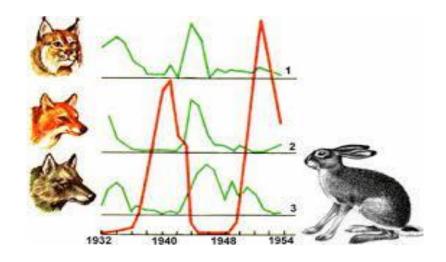
Репарация ДНК и наследственные болезни человека

Нарушение системы репарации у человека является причиной:

- Преждевременного старения
- Онкологических заболеваний (80-90%)
- Аутоиммунных заболеваний (ревматоидный артрит, системная красная волчанка, болезнь Альцгеймера)

Примеры болезней, ассоциированных с нарушением репарации:

Название болезни	Нарушенный тип репарации
Пигментная ксеродерма	Эксцизионная репарация нуклеотидов
Синдром Блума	Репарация двунитевых разрывов путем гомологичной рекомбинации; дефект ДНК-хеликазы
Анемия Фанкони	Репарация двунитевых разрывов путем гомологичной рекомбинации
Талангиэктазия	Подавлен репаративный синтез


Основные виды гомеостаза

- Физиологический
- Клеточный
- Генетический
- Экологический

В данном контексте понятие гомеостаза экстраполируется на надорганизменные уровни организации жизни — популяции, биоценозы и экосистемы. Здесь он проявляется как способность системы к саморегуляции и поддержанию динамического баланса.

Популяционный баланс:

Численность популяции регулируется сложным взаимодействием плотностно-зависимых факторов.

Симбиоз как механизм стабилизации:

Взаимовыгодные отношения между видами являются мощным стабилизирующим фактором в экосистеме.

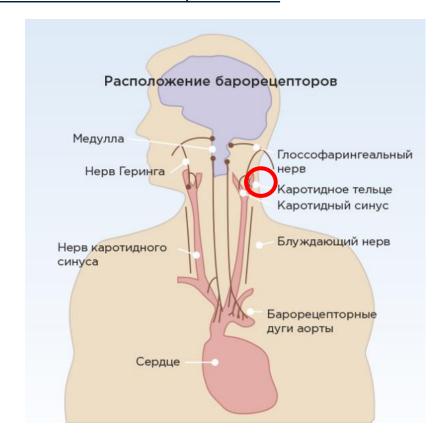
Механизмы гомеостаза: обратная связь

Обратная связь – процесс влияния результата действия на причину и механизм этого действия.

Общая схема системы управления

Простые биологические системы управления состоят из трёх частей:

- 1) детектора, обнаруживающего расхождение контролируемого параметра с требуемым значением,
- 2) регулятора, «включающего» ответную реакцию организма, и
- 3) эффектора органа, на который эта реакция направлена.



Отрицательная обратная связь: возникающее отклонение запускает механизм, который сводит это отклонение к нулю. (выходной сигнал системы уменьшает входной сигнал системы) <u>Результат</u>: отрицательная обратная связь повышает стабильность системы

Общая схема регуляции дыхательных процессов

Высшие центры головного мозга Центр выдоха-Дыхательные Продолговатый центры Хемопродолговатого рецептор ДСО2 мозга Ветвь блуждающего нерва -Трахея Каротидное тельце –Лёгки́е **↑**CO₂ CO2 O_2 Аортальное Сердце правое левое тельце **♦**00₂ Аорта Тканевое дыхание Нейроны Кровеносные Диафрагмальный нерв сосуды Повышенный 🕨 Диаф рагма **уровень** Наружные межрёберные мышцы Внутренние межрёберные мышцы Пониженный **Уровень**

Каротидное тельце — это маленькая парная железа (часто называемая каротидным клубочком или глобусом), расположенная у места разветвления общей сонной артерии, которая действует как **хеморецептор**, анализируя химический состав крови, включая концентрации кислорода, углекислого газа и рН. При обнаружении отклонений от нормы, оно посылает сигналы в мозг для регуляции дыхания и артериального давления, играя <u>ключевую роль в</u> поддержании гомеостаза организма.

Общая схема регуляции глюкозы в крови

Глюкоза является главным субстратом тканевого дыхания и должна непрерывно поступать в клетки (особенно в клетки головного мозга).

Её недостаток вызывает потерю сознания.

Уровень глюкозы в крови регулируется сложной системой при участии шести различных гормонов.

! Задание: нарисовать схему отрицательной обратной связи регуляции глюкозы в крови:

Повышение глюкозы $\rightarrow \dots$

Общая схема регуляции глюкозы в крови

Глюкоза является главным субстратом тканевого дыхания и должна непрерывно поступать в клетки (особенно в клетки головного мозга).

Её недостаток вызывает потерю сознания.

Уровень глюкозы в крови регулируется сложной системой при участии шести различных гормонов.

Повышение глюкозы → Поджелудочная железа → Выброс инсулина →

→ Утилизация глюкозы клетками → Снижение глюкозы → Прекращение выброса инсулина

Механизмы гомеостаза: обратная связь

Положительная обратная связь: выходной сигнал системы усиливает входной сигнал системы <u>Результат</u>: часто приводит систему в неустойчивое состояние → стойкий патологический процесс

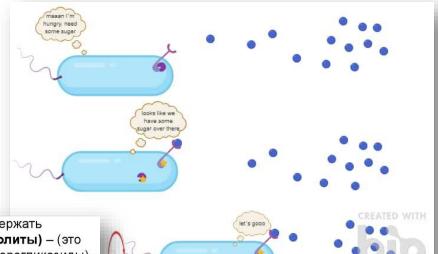
Примеры положительной обратной связи в физиологии

•<u>Роды</u>:

•Во время родов растяжение шейки матки стимулирует выделение окситоцина, который, в свою очередь, усиливает сокращения матки. Это приводит к еще большему растяжению и выделению окситоцина, обеспечивая мощные и завершающие сокращения, необходимые для рождения ребенка.

•Свертывание крови:

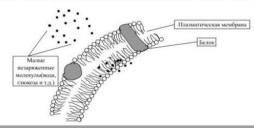
•При повреждении кровеносного сосуда тромбоциты активируются и привлекают другие тромбоциты к месту повреждения. Это приводит к быстрому образованию тромба, который закрывает рану и останавливает кровотечение. Активация одних тромбоцитов стимулирует активацию других, ускоряя процесс свертывания.

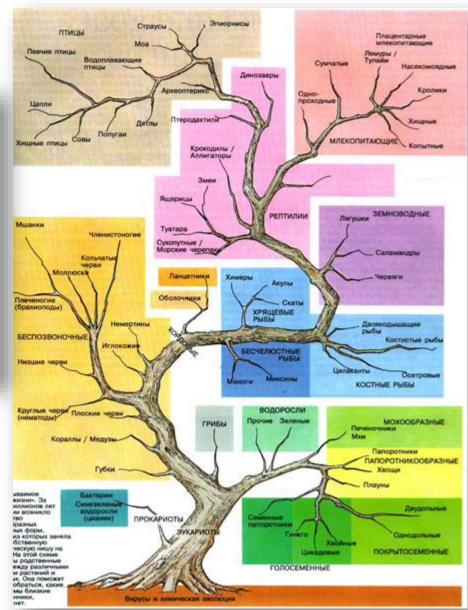

Ключевое отличие от гомеостаза

В отличие от механизмов отрицательной обратной связи, которые стабилизируют систему, положительная обратная связь <u>имеет тенденцию усиливать</u> первоначальный сигнал, выталкивая систему из равновесия и приводя к ее завершению, а не к поддержанию стабильного состояния.

Эволюция гомеостатических механизмов

"Гомеостаз — это не изобретение высших организмов, а результат миллиардов лет эволюции, от бактерий до человека."


Бактериальный хемотаксис представляет собой форму поведенческого гомеостаза.


Для поступления воды в клетку цитоплазма должна содержать низкомолекулярные вещества - осмопротекторы (осмолиты) – (это некоторые аминокислоты и их производные, сахара, гетерогликозиды) и ионы в более высокой концентрации, чем окружающая среда.

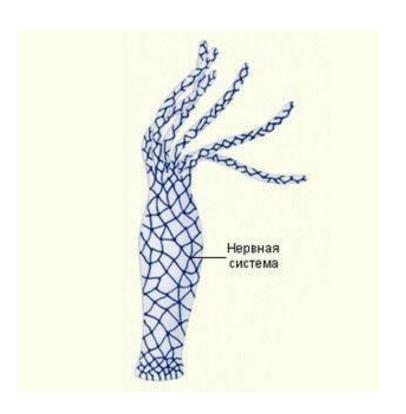
Бетаи́н (от лат. beta — свёкла) — триметильное производное глицина — триметилглицин

Второй распространенной системой осморегуляции в живой природе является система избирательного накопления в клетках ионов К+.

Осморегуляция у бактерий является примером молекулярного гомеостаза.

Эволюция гомеостатических механизмов

Появление многоклеточности → усложнение регуляции


Эволюция пошла по пути специализации: Функциональное разделение и появление специализированных систем интеграции:

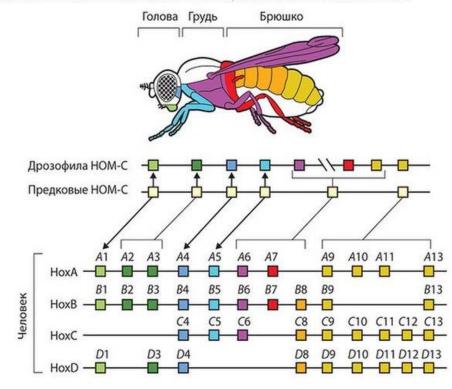
Нервная система обеспечила быструю (импульсную) координацию процессов и реакцию на изменения внешней и внутренней среды

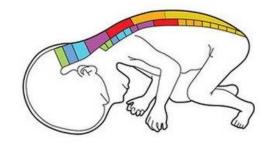
• У примитивных многоклеточных: появляются специализированные клетки, помогающие адекватно реагировать на действие среды, и намного быстрее, чем при химической сигнализации у одноклеточных.

Эндокринная система стала механизмом медленной, но долговременной и диффузной гуморальной регуляции.

• У более сложных организмов: эндокринная система — медленная, но длительно действующая. Например, у кольчатых червей уже есть гормоны, регулирующие рост и регенерацию.

Эволюция гомеостатических механизмов

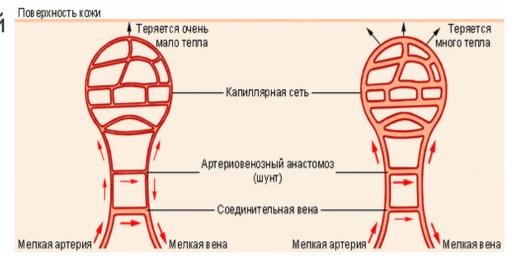

Появление многоклеточности → усложнение регуляции


в эволюции сложных регуляторных сетей сыграл роль молекулярный механизм **дупликации генов** с последующей дивергенцией функций.

- Пример: эволюция семейства генов Нох. Данные гены, кодирующие транскрипционные факторы, контролируют план строения тела вдоль переднезадней оси. Диверсификация этого семейства от общего гена-предка посредством дупликаций и кооптации стала драйвером морфологической сложности у билатерий.
- В результате серии дупликаций у дрозофилы появилось 8 таких генов, а у человека —39.

Благодаря дупликациям и последующим мутациям, разные копии генов приобрели новые функции, что позволило резко увеличить сложность организмов.

УПОРЯДОЧЕННОЕ РАСПОЛОЖЕНИЕ – «ОТ ГОЛОВЫ К ХВОСТУ» – ГОМЕОЗИСНЫЕ ГЕНЫ ЗА НЕМНОГОЧИСЛЕННЫМИ ИСКЛЮЧЕНИЯМИ, СОХРАНЯЮТ У ВСЕХ ЖИВОТНЫХ.


Специализированные адаптации гомеостаза

Освоение новых экологических ниш сопровождалось развитием специализированных гомеостатических механизмов.

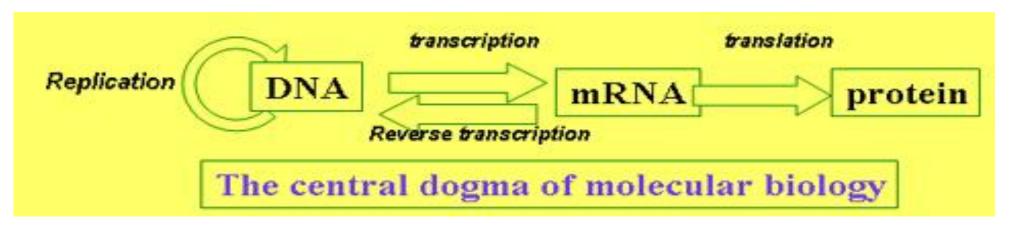
Переход к **гомойотермии** (теплокровности) у предков млекопитающих и птиц является макроэволюционным примером.

Данная адаптация, основанная на установлении стабильной температуры тела независимо от внешней среды, потребовала развития комплекса морфофизиологических признаков:

- высокого уровня базального метаболизма,
- теплоизоляционных покровов,
- механизмов вазомоторики
- терморегуляторного потоотделения.

Специализированные адаптации гомеостаза

Освоение новых экологических ниш сопровождалось развитием специализированных гомеостатических механизмов.


Примером специализированной **генетической адаптации** гомеостатической системы у человека является полиморфизм гена **EPAS1** (Endothelial PAS Domain Protein 1) у коренного населения Тибетского нагорья.

Ген EPAS1 кодирует белок-транскрипционный фактор HIF-2α, который активируется при недостатке кислорода (гипоксии) и регулирует другие гены, участвующие в ответе организма на низкий уровень кислорода, например, путем увеличения производства гемоглобина.

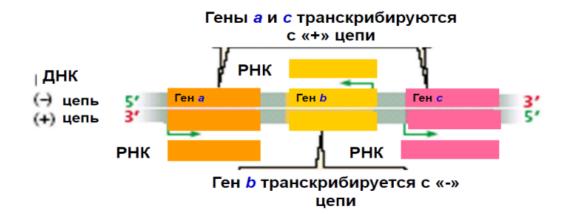
У большинства популяций в условиях гипоксии активация гена EPAS1 приводит к эритроцитозу (повышению количества эритроцитов). У тибетцев же благодаря отбору аллельных вариантов гена EPAS1 данный ответ аттенуирован, что предотвращает развитие негативных последствий полицитемии (повышения вязкости крови, тромбозов), обеспечивая эффективный гомеостаз кислорода в условиях хронической гипоксии высокогорья.

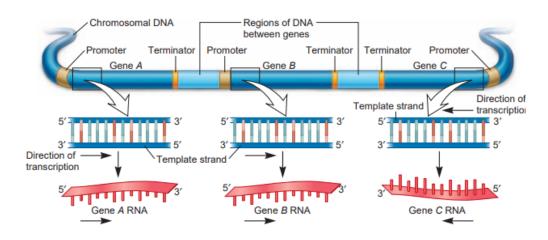
Генетические основы гомеостаза

• Экспрессия гена – это реализация генетической информации, закодированной в ДНК, путём её транскрипции и трансляции.

Клетка должна постоянно **оценивать свое внутреннее состояние** и **адаптивно модулировать экспрессию генов** в ответ на стрессовые воздействия, повреждения ДНК, колебания концентраций метаболитов и сигнальных молекул.

Биологическое значение регуляции экспрессии генов:

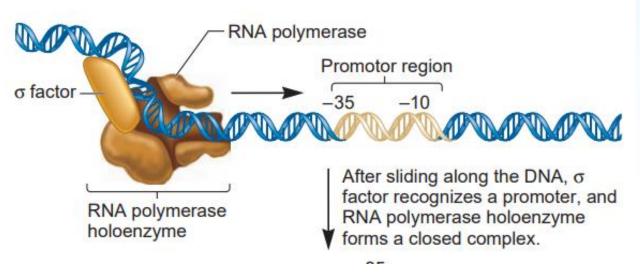

даёт возможность клеткам и организмам приспосабливать свой фенотип к определённым условиям внешней и внутренней среды.

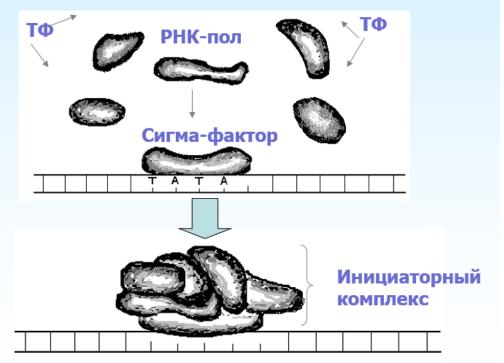

Общие принципы процесса транскрипции у прокариот

- 1. Комплементарность
- 2. Антипараллельность

РНК синтезируется комплементарно и антипараллельно транскрибируемой цепи ДНК

- **3.** *Униполярность* Рост цепи РНК идет только в направлении 5′ 3′
- 4. *Беззатравочность* Для начала синтеза РНК фермент не нуждается в поли- или олигонуклеотидной затравке
- 5. *Асимметричность* транскрибироваться могут обе нити ДНК (в противоположных направлениях), но в каждом отдельном опероне только одна из них

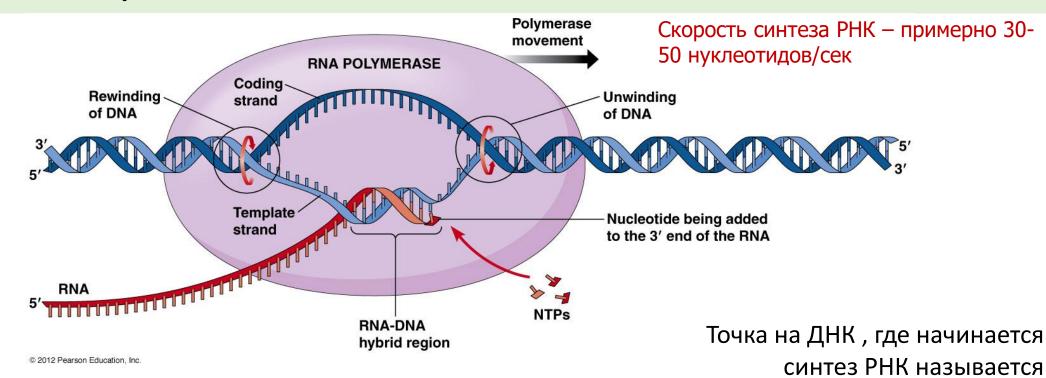



1. Инициация транскрипции

Формирование инициаторного комплекса

Функция сигма-фактора: узнает и связывается с промотором

- 1) ИК формируется на промоторе
- 2) <u>Инициаторный комплекс комплекс, состоящий из</u> σ-фактора (сигма-фактор), транскрипционных факторов и РНК-полимеразы (холофермент)



После удаления сигма-фактора — комплекс называется кор-фермент

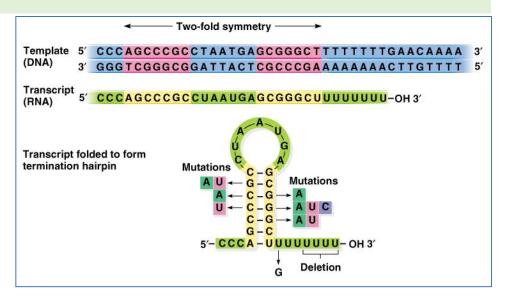
!!! Некоторые антибиотики, например <u>рифампицин</u> и его производные подавляют инициацию транскрипции специфически связываясь с активным центром в РНК-полимеразе.

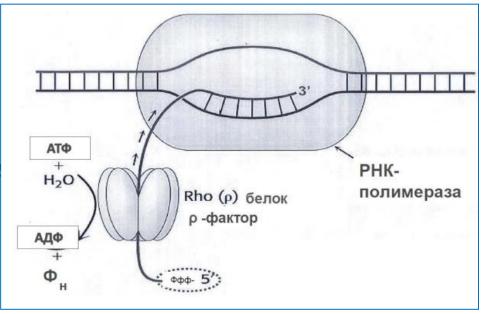
2. Элонгация

стартовой точкой.

- 1. РНК-пол+БФЭ последовательно раскручивают нити ДНК
- 2. разрывают водородные связи
- 3. синтезируется мРНК (5' \rightarrow 3')
- 4. нити ДНК вновь конденсируются

Нить ДНК, на которой синтезируется РНК, называется плюс (+) нитью, кодогенной, антисмысловой, матричной цепью.

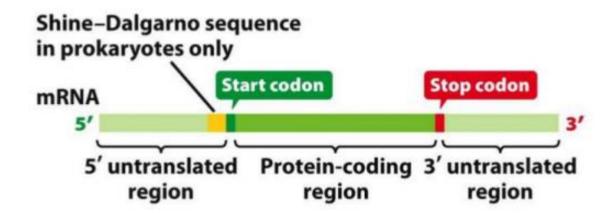

3. Терминация


Виды терминирующих областей:

- 1) р-независимая терминация.
- Классический терминатор р-независимого пути представляет собой G/C-богатую РНК-шпильку и следующую за ней олиго-U последовательность
- Синтез примерно 80% транскриптов *E.coli* терминируется по р-независимому пути

2) р-зависимая терминация

- р-фактор связывается с РНК в специальных пиримидин-богатых сайтах,
- движется в направлении 3'- конца молекулы, пока не догонит РНКП. После этого происходит диссоциация элонгационного комплекс



Структура мРНК прокариот

Prokaryotic mRNA Multiple translation start sites UTR Protein 1 Protein 2 Protein 3 UTR

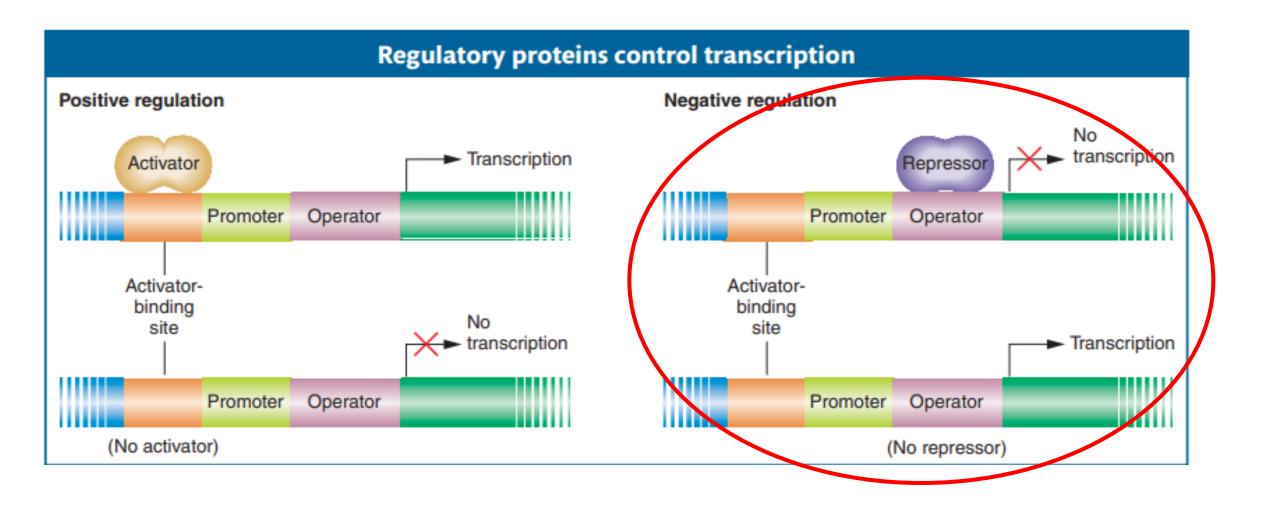
- 5'нетранслируемый регион, включающий сайт посадки рибосомы (последовательность Shine-Dalgarno)
- Кодирующая область
- З'нетранслируемый регион

Регуляция экспрессии генов у прокариот на уровне инициации транскрипции

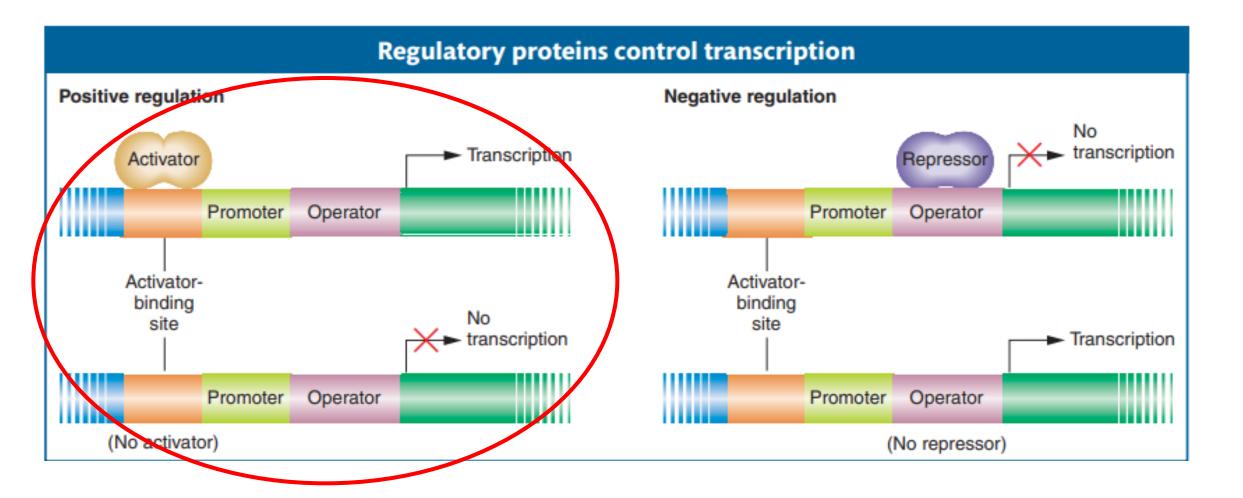
• Способы регуляции:

- 1) Регуляция транскрипции путём <u>изменения вторичной</u> <u>структуры участка ДНК</u>, на котором фермент РНК-полимераза осуществляет синтез РНК.
- Пространственную структуру ДНК изменяют специальные ферменты или на кодирующей части ДНК формируются изгибы и шпильки

Регуляция экспрессии генов у прокариот на уровне инициации транскрипции


• 2. Регуляция путём взаимодействия специальных белков-регуляторов с оператором.

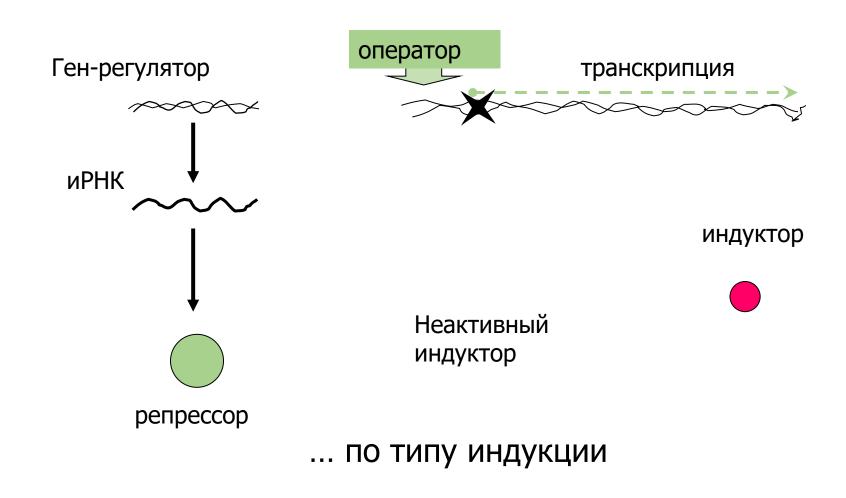
• механизм был предложен Ф. Жакобом и Ж. Моно в 1961 г. Этот тип регуляции называется «Контроль синтезом белка на уровне транскрипции» или «Теория оперона».


- К оператору присоединяются два типа белков-регуляторов активатор и репрессор (продукты генов-регуляторов)
- Это генетические факторы регуляции.

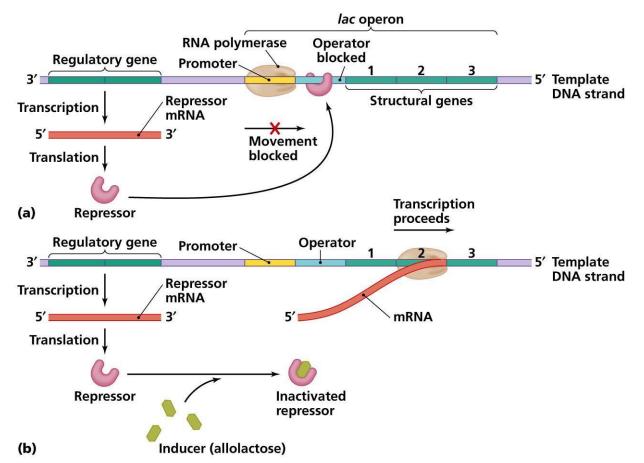
- **Penpeccop,** взаимодействуя с оператором, перекрывает его и частично промотор, создавая стерическое **препятствие** для присоединения РНК-полимеразы к промотору.
- Такая регуляция носит название негативный контроль.

- **Активатор** взаимодействует с оператором, что **ускоряет** осаждение на промотор новых молекул РНК-полимераз и повышает интенсивность транскрипции гена, это приводит к существенному увеличению синтеза РНК и синтеза белка.
- Такая регуляция носит название позитивный контроль.

Принцип регуляции на высоком уровне


На этом уровне в процессе регуляции вовлекаются два новых участника — **субстрат и продукт**.

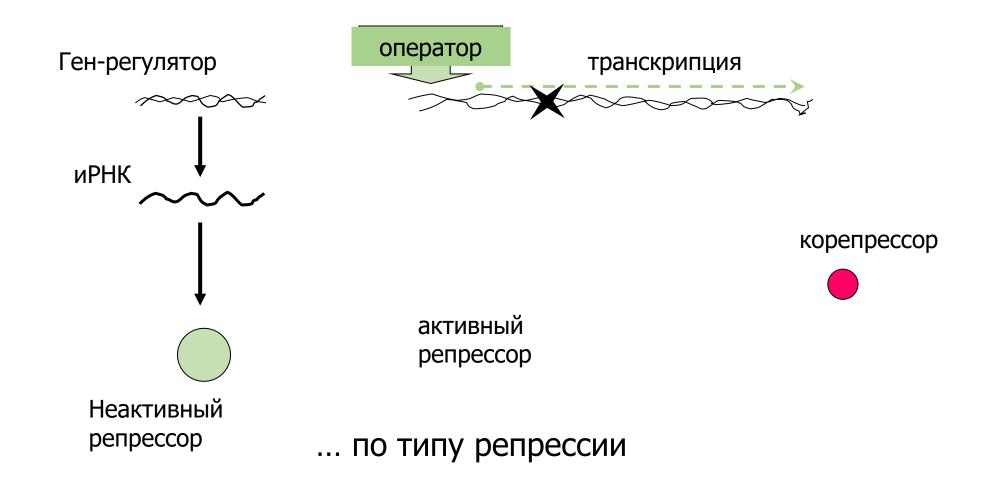
- Субстрат (вещество, поступающее в клетку и вовлекающееся в метаболизм, напр. лактоза) может расщепляться, под действием какого- либо фермента.
- Субстрат и продукт относятся к негенетическим факторам регуляции (эффекторы).
- Субстрат и продукт могут выступать как:
 - активаторы транскрипции тогда их называют индукторами
 - ингибиторы тогда их называют корепрессорами


Системы контроля: средства регуляции оперонов

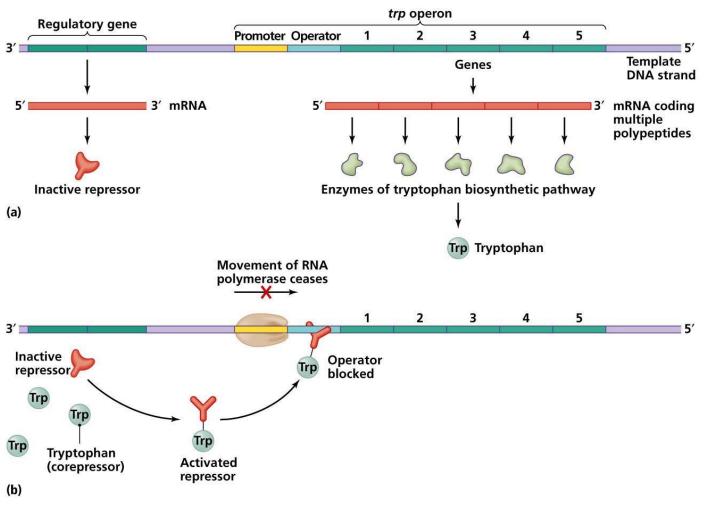
Негативная регуляция	Позитивная регуляция
По типу индукции	По типу индукции
По типу репрессии	По типу репрессии

I. Негативная регуляция...

Негативный контроль по типу индукции: (*lac*) operon

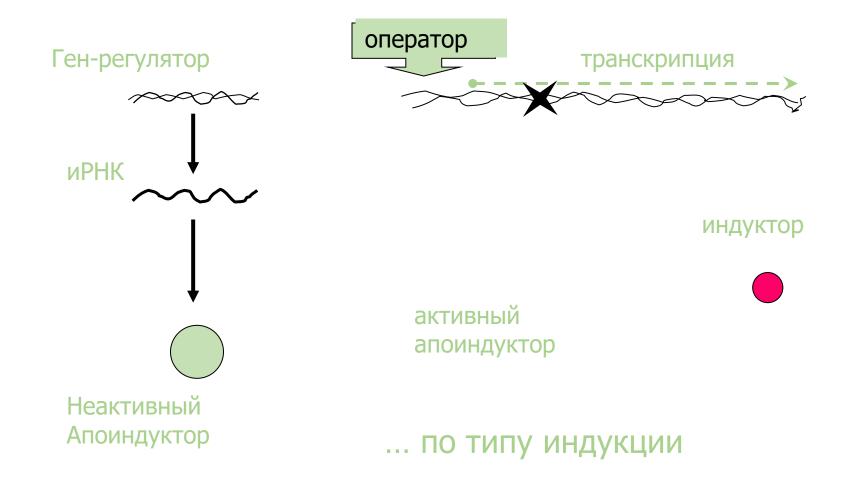

Негативная индукция - контролирующим транскрипцию фактором является негативный фактор, "выключатель" - белок - репрессор. Индукция (включение) происходит при потере сродства белка - репрессора к оператор

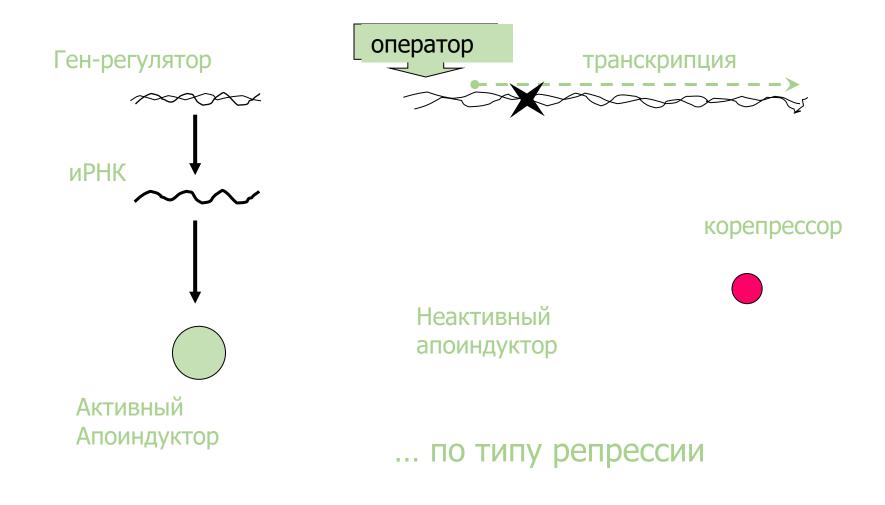
Ген LacZ отвечает за синтез фермент β-галактозидазы, гидролизующего лактозу до галактозы и глюкозы.


Ген LacY отвечает за синтез пермеазы, осуществляющей активный транспорт лактозы в клетку.

LacA - кодирует фермент β-галактозид трансацетилазу, переносящий ацетильную группу от ацетил-КоА на βгалактозиды

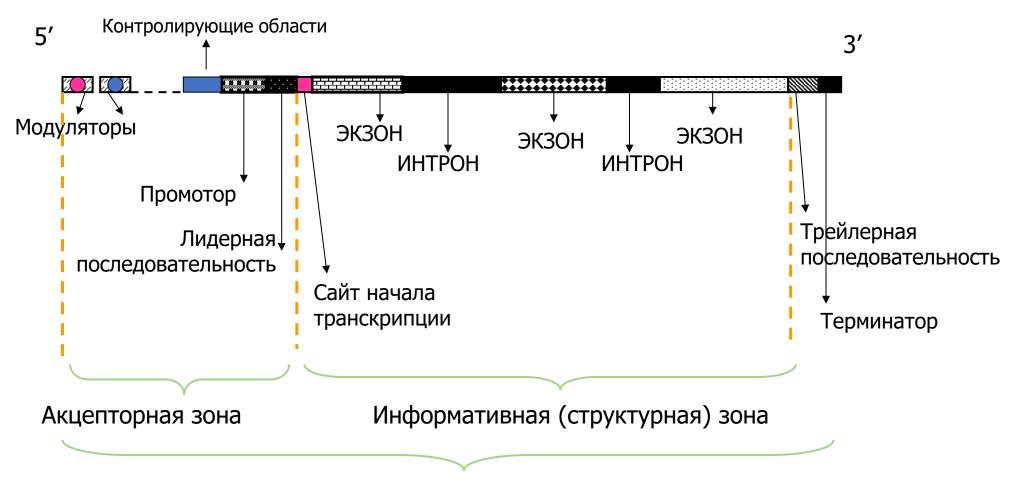
I. Негативная регуляция...


Негативный контроль по типу репрессии: (trp) operon


негативная репрессия

- В норме оперон работает.
- Белок репрессор неактивен: в форме апорепрессора не способен садиться на оператор
- Клетке нужно N молекул триптофана. N+1-ая молекула взаимодействует с апорепрессором.
- Он меняет конформацию, садится на оператор и синтез
 РНК прекращается - репрессия конечным продуктом

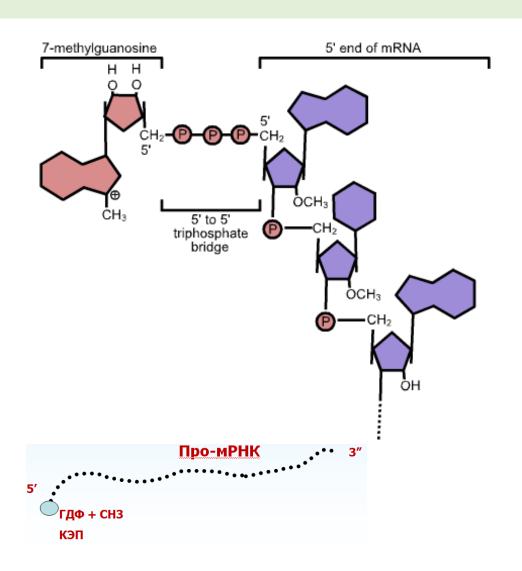
II. Позитивная регуляция...



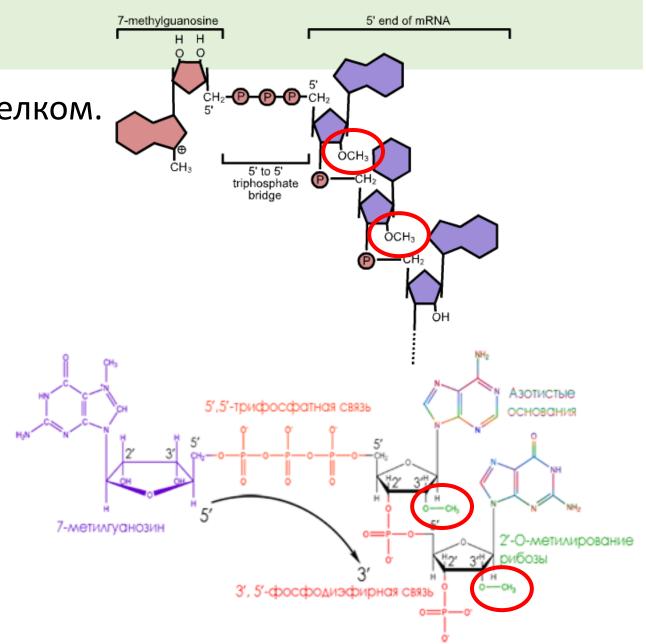
II. Позитивная регуляция...

Строение гена эукариот

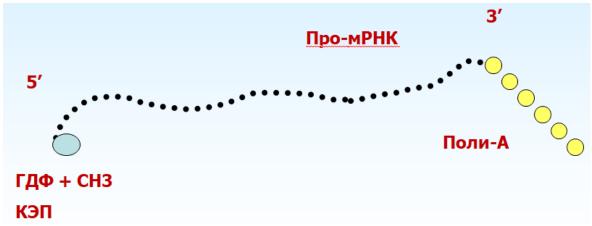
- 1) Экзоны информативные участки гена эукариот
- 2) Интроны неинформативные участки гена эукариот



Процессинг. Этапы созревания РНК

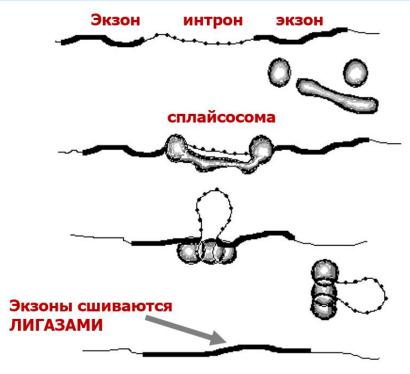

- 1) Взаимодействие про-иРНК с белком.
- 2) Кэпирование 5'-конца.
- 3) Метилирование про-иРНК.
- 4) Полиаденилирование.
- 5) Сплайсинг.

- РНК, связанная с белком, носит название рибонуклеопротеид (информосома).
- В такой форме транскрипт находится в ядре.
- При выходе из ядра одни РНК продолжают оставаться в соединении с белком, другие выходят из комплекса и принимают участие в трансляции.


- 1) Взаимодействие про-иРНК с белком.
- 2) Кэпирование 5'-конца.
- 3) Метилирование про-иРНК.
- 4) Полиаденилирование.
- 5) Сплайсинг.
- Заключается в химическом и конформационном изменении 5'конца синтезированной РНК.
- Кэпирование происходит в момент синтеза РНК, ещё до её отделения.
- Специальные ферменты присоединяют к 5'концу про-иРНК ГДФ (гуанозиндифосфат), а затем метилируют его.

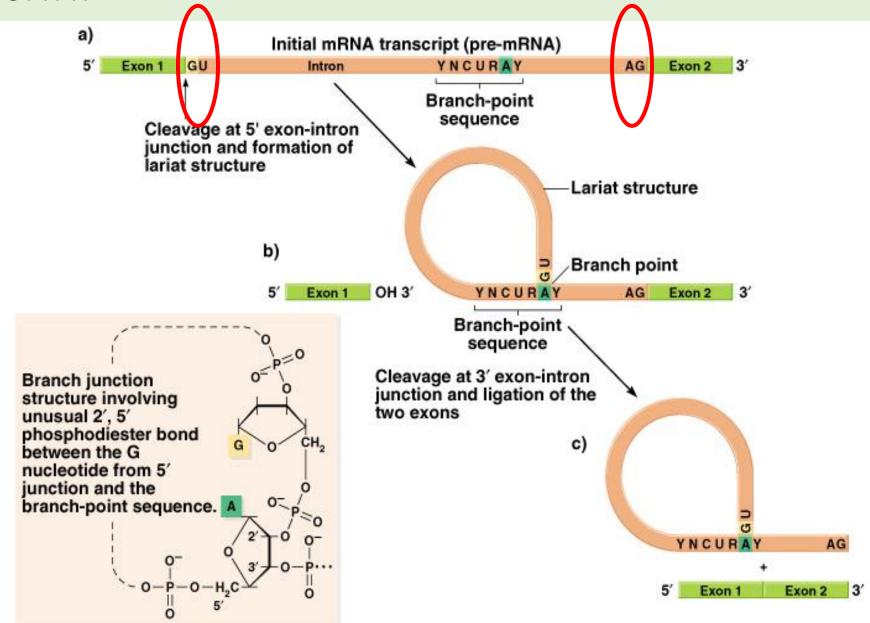
- 1) Взаимодействие про-иРНК с белком.
- 2) Кэпирование 5'-конца.
- 3) Метилирование про-иРНК.
- 4) Полиаденилирование.
- 5) Сплайсинг.
- Ферменты **метилазы,** метилируют собственный РНК-транскрипт в тех сайтах, которые могут быть разрезаны собственными ферментами **рестриктазами**.

- 1) Взаимодействие про-иРНК с белко
- 2) Кэпирование 5'-конца.
- 3) Метилирование про-иРНК.
- 4) Полиаденилирование.
- 5) Сплайсинг.
- Процесс присоединения к 3' концу про-иРНК 100 200 остатков адениловой кислоты.
- Предварительно удаляются 20 нуклеотидов на 3'-конце про-мРНК до сайта инициации полиаденилирования (5'-AAUAAA-3').
- Эти остатки носят название поли-А последовательности (поли-А хвосты).
- Полиаденилированию подвергаются не все про-иРНК. Например, молекулы всех типов гистонов не содержат поли-А последовательности.

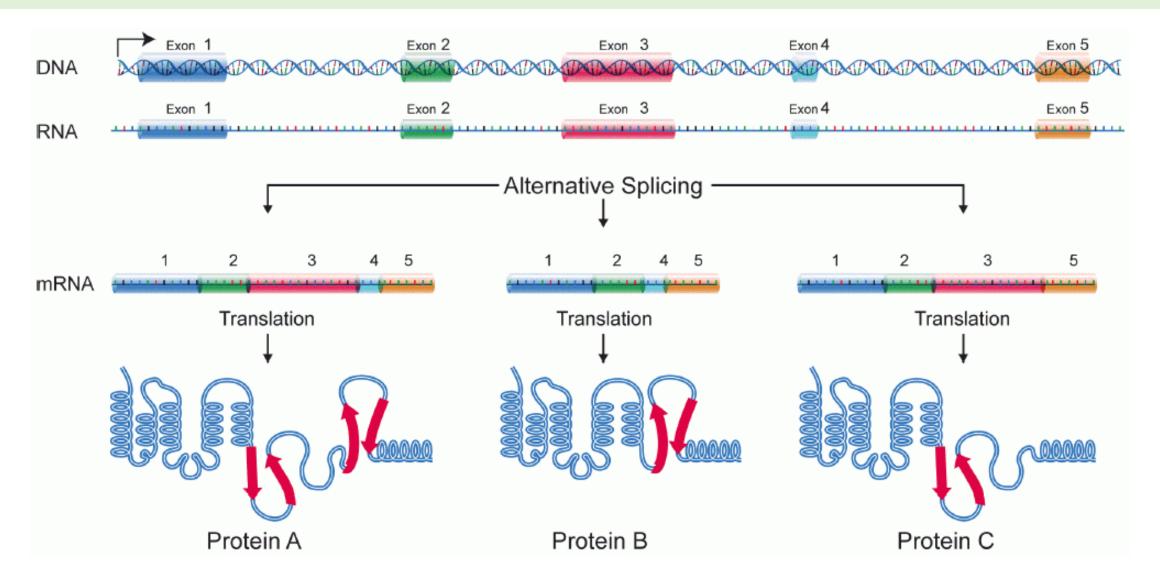


Функции поли-А-хвостов

- 1) Облегчают выход иРНК из ядра в цитоплазму
- 2) Предохраняют иРНК от разрушения
- 3) Участвуют в терминации синтеза про-иРНК.


- 1) Взаимодействие про-иРНК с белком.
- 2) Кэпирование 5'-конца.
- 3) Метилирование про-иРНК.
- 4) Полиаденилирование.
- 5) Сплайсинг.
- Сплайсинг заключается в вырезании интронов и сшивании экзонов.
- В вырезании интронов из РНКтранскрипта и принимают участие малые ядерные РНК (мяРНК) и белки-ферменты.

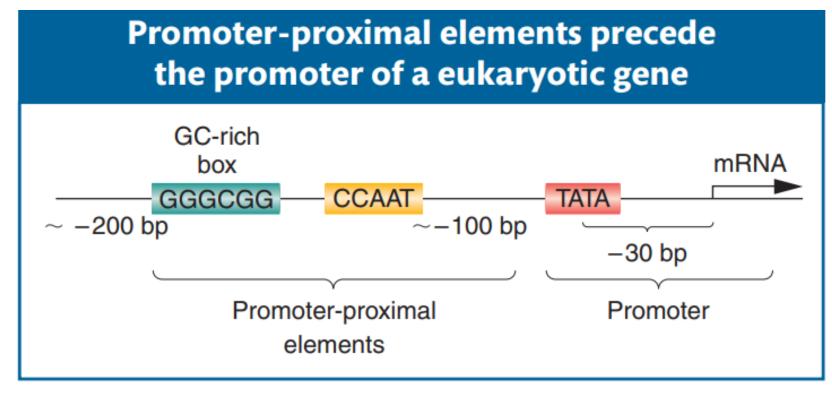
комплекс носит название малые ядерные рибонуклеопротеиды, мяРНП или <u>сплайосома</u>.

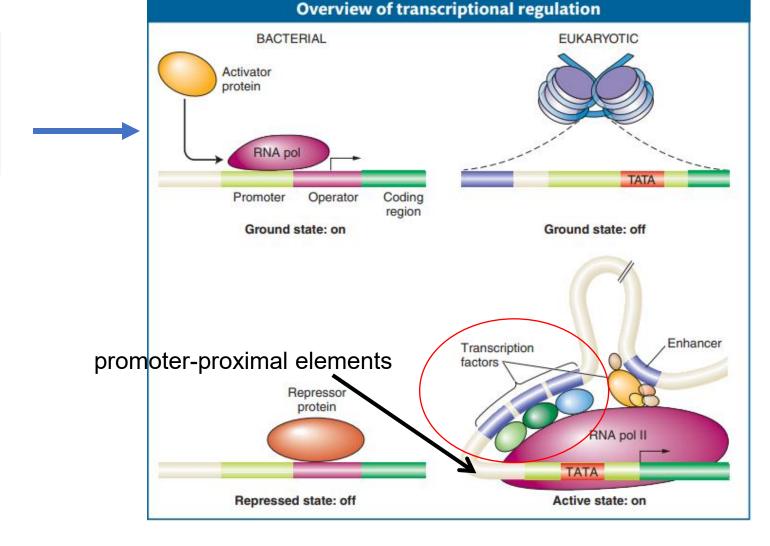

Сплайсинг

Альтернативный сплайсинг

- **Альтернативный сплайсинг** происходит при экспрессии одного и того же гена в разных тканях.
- На основе одного и того же первичного <u>транскрипта</u> (пре-мРНК) происходит образование нескольких зрелых мРНК.
- Структурные и функциональные различия образовавшихся транскриптов могут быть вызваны как выборочным включением в зрелую мРНК <u>экзонов</u> первичного транскрипта, так и сохранением в ней частей <u>интронов</u>
- Это приводит к образованию разных иРНК, которые кодируют белки с различной ферментативной активностью.

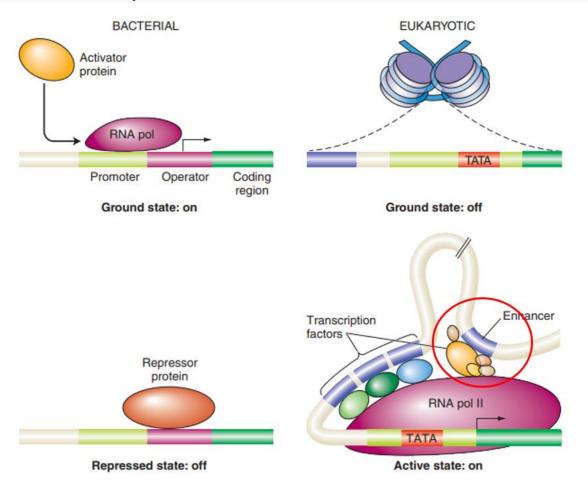
Альтернативный сплайсинг

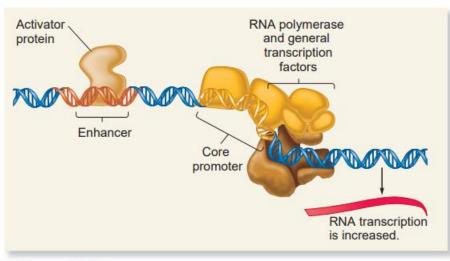

Альтернативный сплайсинг

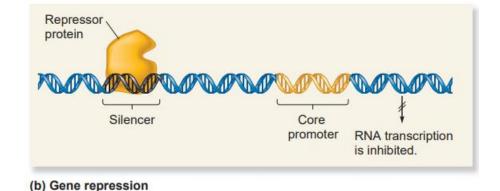

- Регуляция экспрессии генов у эукариот является более сложным и комплексным процессом, чем у прокариот
- ! Существует множество механизмов, обеспечивающих регуляцию экспрессии генов эукариот

1. Регуляторные белки взаимодействуют с промотор-проксимальными элементами

около промотора

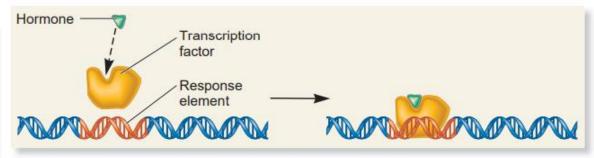



У бактерий РНКполимераза обычно может начать транскрипцию, если белок-репрессор не блокирует ее.

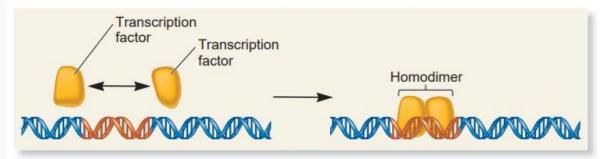

Однако у эукариот упаковка ДНК с нуклеосомами предотвращает транскрипцию, если не присутствуют другие регуляторные белки. Эти регуляторные белки открывают промоторные последовательности, изменяя плотность или положение нуклеосом. Они также могут напрямую привлекать РНК-полимеразу II через связывание

2. Регуляторные белки (факторы транскрипции) связываются с цис-действующими регуляторными последовательностями в ДНК, называемыми энхансерами /сайленсерами.

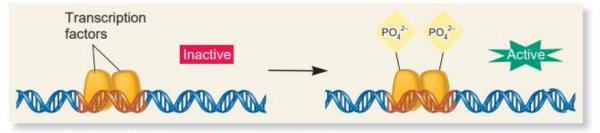
(a) Gene activation



3) модуляции функции регуляторных факторов транскрипции:


а) Присоединение небольших эффекторных молекул (гормонов)

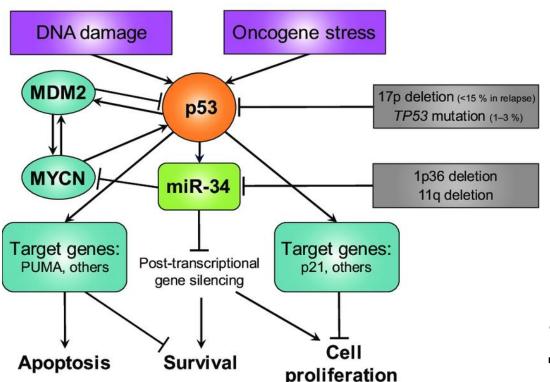
b) Белок-белковые взаимодействия

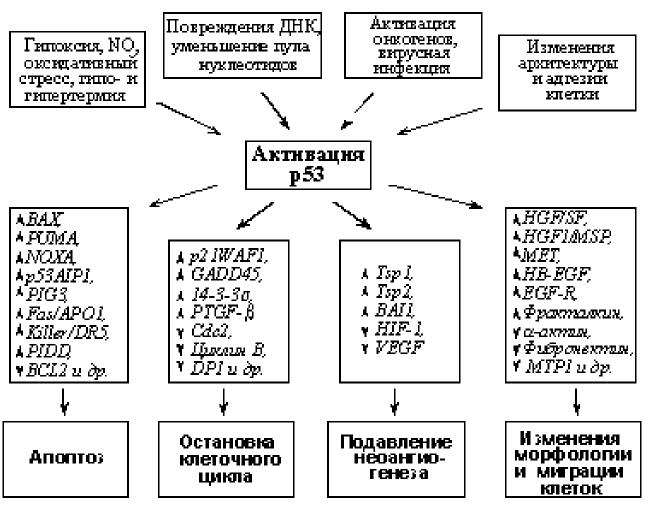

с) Фосфорилирование белков

(a) Binding of a small effector molecule such as a hormone

(b) Protein-protein interaction

(c) Covalent modification such as phosphorylation

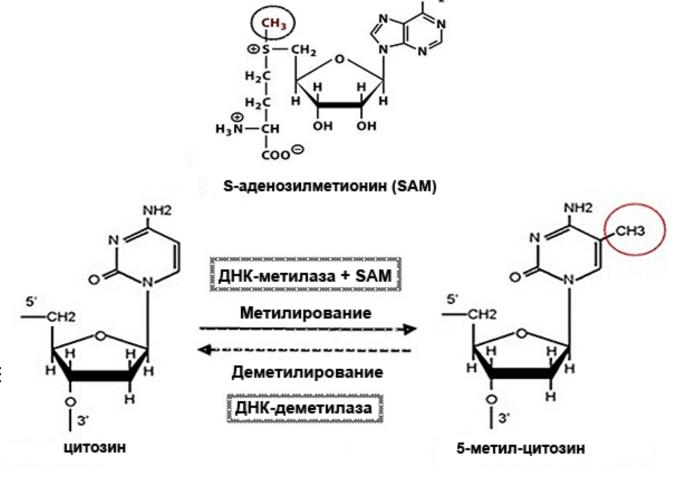

4) ремоделирование хроматина 30 nm of packed H1 histone octamer


- ✓ Хроматин может быть динамичным; нуклеосомы не обязательно находятся в фиксированных положениях на хромосоме.
- ✓ Ремоделирование хроматина изменяет плотность или положение нуклеосом и является неотъемлемой частью регуляции эукариотических генов.

Регуляция экспрессии генов: Отрицательная обратная связь

Идеальным объектом для демонстрации принципа обратной связи на генетическом уровне является **супрессор опухолей р53**.

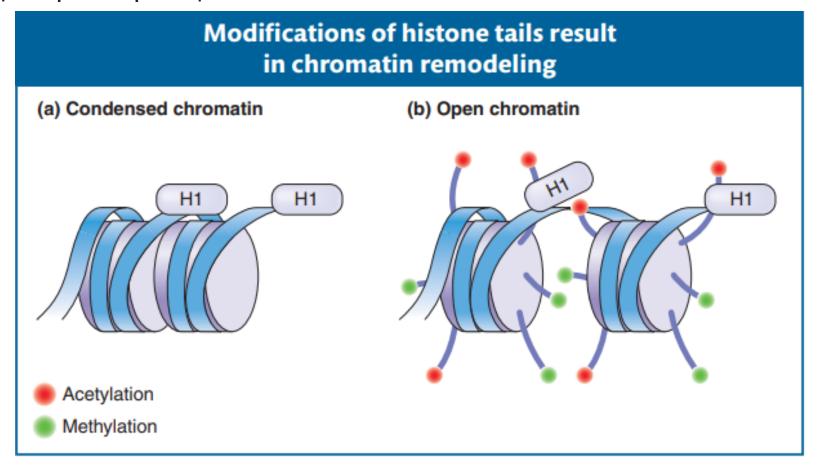
Белок p53 - **страж генома**, - центральная роль в поддержании клеточного гомеостаза.



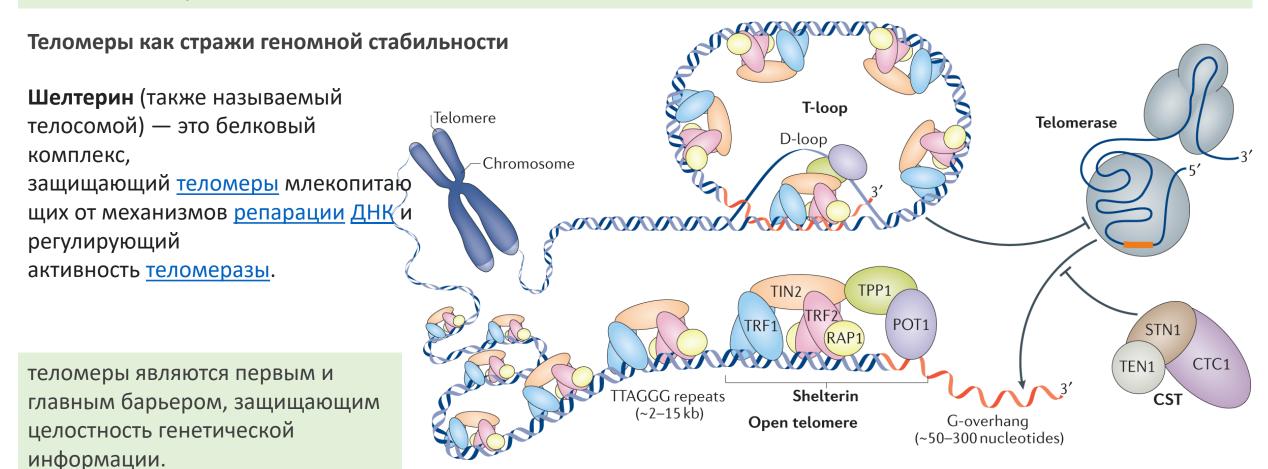
активация р53 приводит к устранению причины стресса (ремонт ДНК) или, если повреждение неисправимо, к элиминации поврежденной клетки

Эпигенетические механизмы гомеостаза

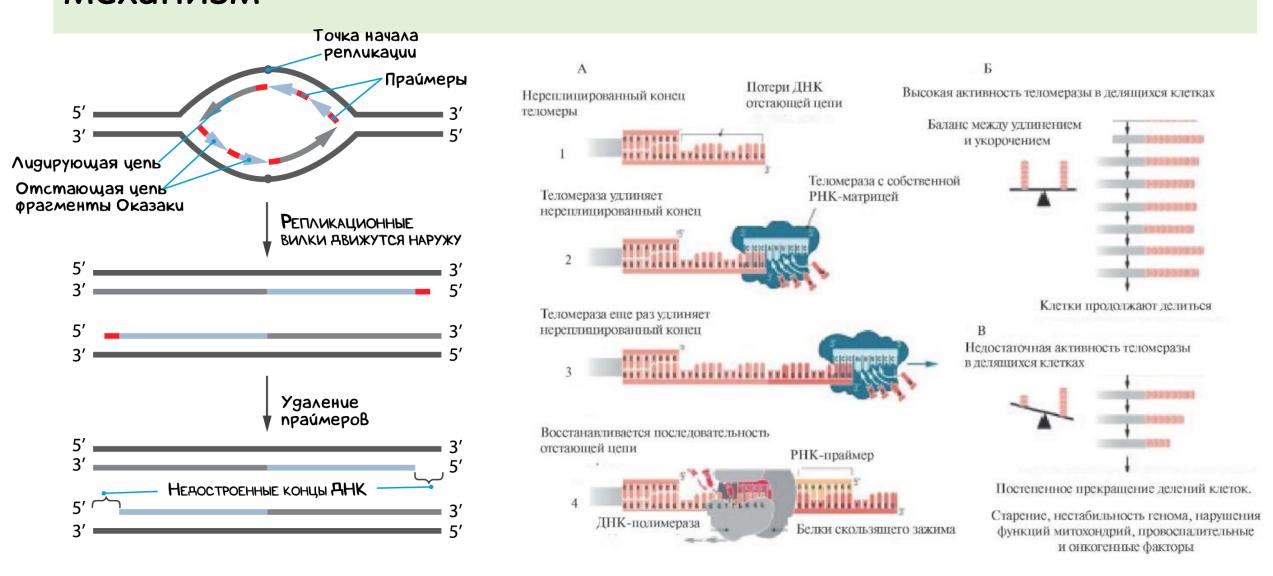
ДНК-метилирование


- ✓ У млекопитающих метильная группа обычно добавляется к цитозину в динуклеотиде СG. Паттерн метилирования называется симметричным метилированием.
- ✓ У млекопитающих: от 70 до 80 процентов всех динуклеотидов CG метилированы
- ✓ Большинство неметилированных динуклеотидов СG обнаруживается в кластерах рядом с промоторами генов. Эти области называются CpG-островками.

Эпигенетические механизмы гомеостаза

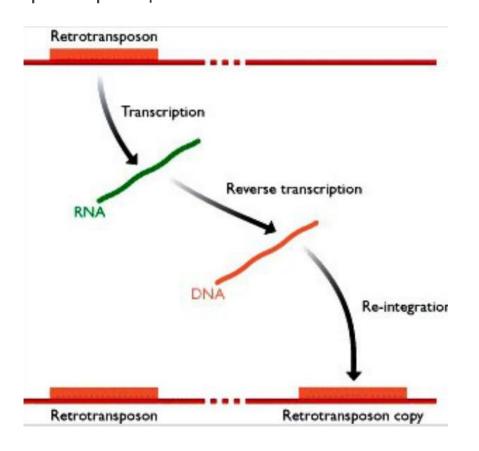

Модификация гистонов

Удаление и добавление ацетильных и метильных групп к гистоновым хвостам заставляет нуклеосомы раздвигаться, подвергая ДНК воздействию белков, регулирующих транскрипцию.



Концепция геномного гомеостаза

Геномный гомеостаз — это совокупность молекулярных механизмов, направленных на поддержание структурной и функциональной целостности ДНК, обеспечение точной репликации и транскрипции, а также на контроль над мобильными генетическими элементами.



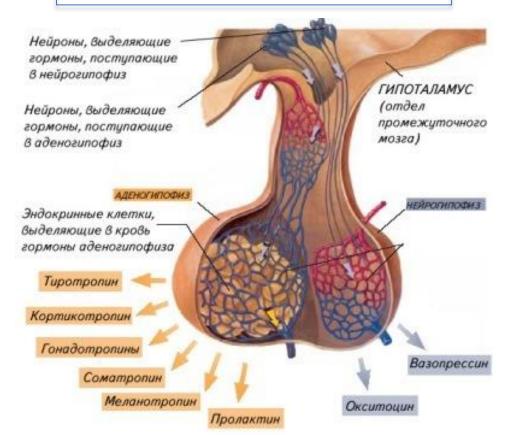
Теломеры и репликативное старение: гомеостатический механизм

Ретротранспозоны: скрытая угроза геномной стабильности

Ретротранспозоны — это мобильные генетические элементы, которые размножаются через механизма «копирование-вставка» с участием обратной транскрипции.

Угрозы, которые они представляют:

- **Инсерционный мутагенез**: Встраивание новой копии ретроттранспозона в кодирующую или регуляторную область гена может нарушить его функцию.
- Гомологичная и негомологичная рекомбинация: Высокая степень гомологии между многочисленными копиями ретротранспозонов на разных хромосомах может привести к хромосомным перестройкам.
- **Транскрипционный шум**: Нежелательная экспрессия самих транспозонов или соседних генов.


LINE-1 (сокращение от Long Interspersed Nuclear Element-1)

Системы подавления ретротранспозонов: поддержание гомеостаза

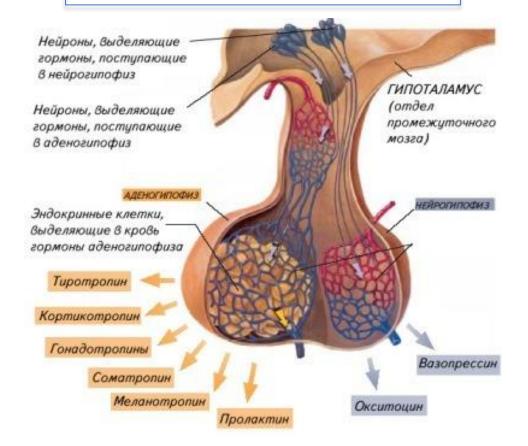
- 1.Эпигенетическое молчание: Это основной механизм.
 - Метилирование ДНК: Промоторные области ретротранспозонов гиперметилированы, что препятствует инициации транскрипции.
 - **Репрессивные гистоновые модификации**: Гистоны, ассоциированные с транспозонами, несут метки (например, H3K9me3, H3K27me3), которые способствуют формированию гетерохроматина, делая ДНК недоступной для транскрипционного аппарата.
- **2.Посттранскрипционное подавление**: Если транскрипт все же образовался, в дело вступают механизмы RNA-интерференции. Маленькие интерферирующие PHK (siRNA) и piwi-взаимодействующие PHK (piRNA) специфически узнают и разрушают мPHK ретротранспозонов.
- **3.Апоптоз**: Клетки с высокой активностью ретротранспозонов могут быть элиминированы через активацию врожденного иммунного ответа (цитокинового шторма) или путей программируемой клеточной смерти.

Нервная регуляция

Гуморальная регуляция Иммунный надзор

Поддержание гомеостаза достигается за счет сложной интеграции трех основных механизмов

Нервная регуляция обеспечивает быстрые и точные адаптивные ответы на изменения внешней и внутренней среды. Центральную роль в этом процессе играет **гипоталамо-гипофизарная система** — главный нейроэндокринный интерфейс организма.


- •Гипоталамус интегрирует сигналы от высших нервных центров и периферических органов, синтезируя рилизинг-гормоны (например, кортиколиберин, соматолиберин).
- •Гипофиз в ответ секретирует тропные гормоны (АКТГ, ТТГ, СТГ), которые регулируют деятельность периферических эндокринных желез (надпочечников, щитовидной железы).

Этот каскадный механизм обеспечивает иерархическую регуляцию метаболизма, стресс-ответа и репродуктивных функций.

Нервная регуляция

Гуморальная регуляция

Иммунный надзор

Группы гормонов гипоталамуса:

либерины — усиливают функцию гипофиза

- соматолиберин
- тиреолиберин
- адренокортиколиберин
- пролактолиберин
- фоллилиберин
- люлиберин
- меланолиберин

статины – тормозят функцию гипофиза

- соматостатин
- пролактостатин
- меланостатин

Работа ГГС происходит по принципу «обратной связи».

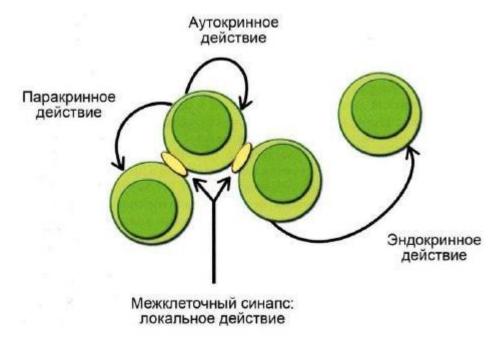
Нервная регуляция

Гуморальная регуляция

Иммунный надзор

Гуморальная регуляция осуществляется через биологически активные вещества, транспортируемые <u>жидкостями</u> внутренней среды.

К ним относятся:


1.Гормоны — продукты эндокринных желез (например, инсулин, глюкагон, кортизол). Действуют дистантно, регулируя метаболизм, рост и дифференцировку клеток.

Гуморальные факторы действуют по Мышцы Поглощение принципу отрицательной обратной связи: изменение глюкозы клетками Секретируемый инсулин параметра среды (например, уровня глюкозы) запускает люкоза → СО₂+Н₂О люкоза → Гликоген (регулятор) Глюкоза 🖚 Жир Островки Лангерганса секрецию регулятора, корректирующего это отклонение. (Эффектор) Снижение уровня глюкозы Отрицательная обратная связь Повышение уровня глюкозы Пища (вход) Нормальный Нормальный Ткани фовень глюкозы уровень глюкозы (выход) в крови в крови Отрицательная обрагная связь Ассимиляция Снижение уровня глюкозы Повышение уровня глюкозы Островки Лангерганса, кора и мозговое вещество Печень надпочечников, Гликоген 🖚 Глюкоза гипоталамус Белок — 🖚 Глюкоза (Эффектор) Секреция глюкагона, глюкок ортико и дов, адреналина, гормона роста (регулятор)

Нервная регуляция

Гуморальная регуляция

Иммунный надзор

Гуморальная регуляция осуществляется через биологически активные вещества, транспортируемые <u>жидкостями</u> внутренней среды.

К ним относятся:

- **2. Цитокины** пептиды, секретируемые иммунными и другими клетками (интерлейкины, интерфероны). Обеспечивают межклеточную коммуникацию в рамках иммунного ответа и воспаления.
- по принципу отрицательной обратной связи (подавлять выработку провоспалительных цитокинов, тем самым предотвращая чрезмерный иммунный ответ)
- по принципу положительной обратной связи (один цитокин может стимулировать выработку других цитокинов, усиливая воспалительный ответ и активируя больше иммунных клеток)

Нервная регуляция
Гуморальная регуляция
Иммунный надзор

Иммунная система поддерживает гомеостаз через распознавание и элиминацию патогенов, а также удаление поврежденных или малигнизированных клеток.

Этот процесс включает:

АГ Сокращения Th – Т-хелперные клетки ИЛ – интерлейкины MHC-1 ATK MHC-2 Р – плазматические клетки ИНФ - интерферон АПК – антиген-презентирующая T-CD8+ T-CD4+ ФНО – фактор некроза опухолей МНС — белки главного комплекса гистосовместимости ← ИЛ-10 ил-4 ил-5 В-лимф Th-1 **IgM** инф-у IgA инф-у Активация В-кл ΦΗΟ-α IgD Р-клетки Т-киллеров памяти IgE Активация Активация макрофагов NK-клеток

Гуморальный иммунитет

Клеточный иммунитет

- •Врожденный иммунитет: фагоцитоз, система комплемента, воспалительный ответ.
- •Адаптивный иммунитет: антиген-специфичные Т- и В-лимфоциты, формирование иммунной памяти.

Иммунный надзор обеспечивает молекулярное постоянство внутренней среды, предотвращая инфекции и неопластические процессы.

Гомеостаз как эволюционная и технологическая парадигма

гомеостаз можно рассматривать как **центральную эволюционную стратегию**, направленную на оптимизацию выживания и репродуктивного успеха в условиях нестабильной внешней среды.

- **1.Консервативность базовых механизмов**. От бактериальных систем хемотаксиса и осморегуляции до сложных нейроэндокринных осей у млекопитающих прослеживается универсальный принцип **отрицательной обратной связи**. Это свидетельствует о глубокой эволюционной консервативности данного подхода к поддержанию стабильности.
- 2.Дупликация и дивергенция генов как ключевой двигатель усложнения. Возникновение многокомпонентных регуляторных каскадов (например, гипоталамо-гипофизарно-надпочечниковой оси) и появление новых функций у гормонов и их рецепторов стало возможным благодаря механизмам дупликации генов с последующей неофункционализацией.
- **3.Адаптивная ценность**. Способность поддерживать постоянство внутренней среды обеспечила организмам независимость от внешних флуктуаций, что стало ключевым преимуществом в освоении новых экологических ниш, как демонстрирует пример генетической адаптации тибетцев (ген EPAS1) к гипоксии.

Перспективы исследований: от понимания к контролю

Перспективные направления для моделирования и коррекции гомеостатических процессов:

- **1. Синтетическая биология**. (цель: конструирование искусственных биологических систем с заданными функциями. В контексте гомеостаза —создание **синтетических генетических контуров**, способных выполнять регуляторные функции.
 - Пример: разработка искусственных систем обратной связи, чувствительных к конкретным метаболитам (например, глюкозе), для терапии метаболических заболеваний. Такие системы могли бы автономно поддерживать физиологическую концентрацию целевого соединения, действуя по принципу «искусственной поджелудочной железы» на клеточном уровне.
- 2. **CRISPR-опосредованная коррекция генов**. Технологии редактирования генома, в частности CRISPR-Cas системы, открывают возможность для **прецизионной коррекции наследственных нарушений гомеостаза**.
 - Исправление точковых мутаций в генах ключевых регуляторов (н-р, рецепторов инсулина)
 - Эпигеномное редактирование целенаправленное изменение паттернов метилирования ДНК или модификаций гистонов для восстановления нормальной экспрессии генов

Литература

- 1. Биология: учебник: в 2 т./ под ред. В.Н. Ярыгина. М.: ГЭОТАР-Медиа, 2011. Т.2. 736 с.
- 2. Биология. Руководство к лабораторным занятиям: учебное пособие/Под ред. Н.В. Чебышева. 2- е изд., М.: ГЭОТАР-Медиа, 2011. 284 с.
- 3. Биология: руководство к практическим занятиям: учебное пособие/ под ред. В.В. Маркиной. М.: ГЭОТАР-Медиа, 2010. 448 с.

