КРОВЬ. ЭРИТРОЦИТЫ

ЛЕКЦИЯ ПРОФЕССОРА Р.Р. ИСЛАМОВА

Кровь – жидкая и подвижная ткань внутренней среды организма

А почему организм является целым? – Почему наблюдается такое соподчинение его частей? – Почему есть некоторая корреляция или регуляция роста, питания, размножения и т.д.? Следовательно, есть какие-то системы, которые объединяют организм.

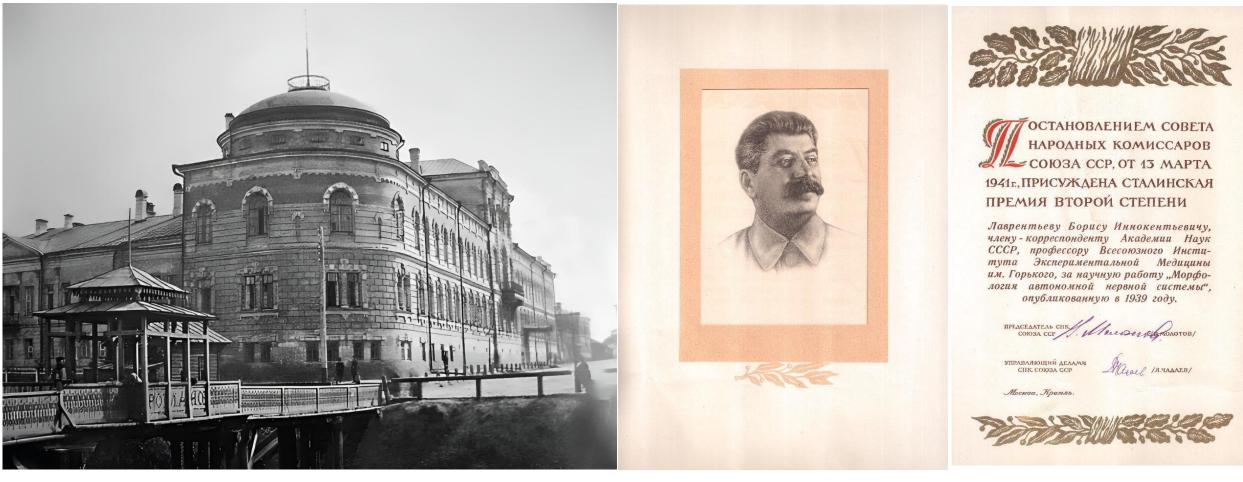
Эти несколько слов «организм как целое» кажутся какими-то трансцендентальными [за пределами познания] или метафизическими [умозрительное, не основанное на опыте]. Эта целостность чем-то обеспечивается. Она обеспечивается какими-то общими регулирующими системами, среди которых кровеносная система занимает одно из первых мест.

Борис Иннокентьевич Лаврентьев (12.08.1892, Казань — 9.02.1944, Москва)

1901–1908 — учёба в Казанском первом реальном училище 1908–1914 —учёба на медицинском факультете Казанского университета; со 2 курса научная работа на кафедре гистологии под руководством проф. Д.А.Тимофеева

1913— выход в свет первой печатной работы (иннервация уретры) 1914— начало работы прозектором кафедры гистологии Казанского университета

1914—1921 — участие в качестве военного врача в первой мировой и гражданской войнах

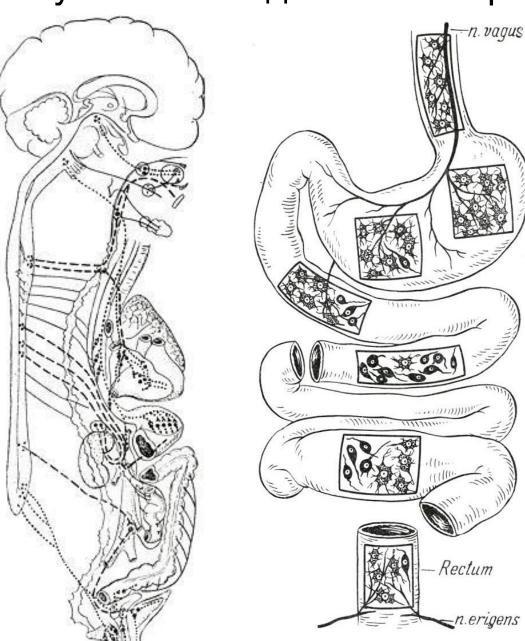

1921 — возвращение на кафедру гистологии Казанского университета на должность прозектора

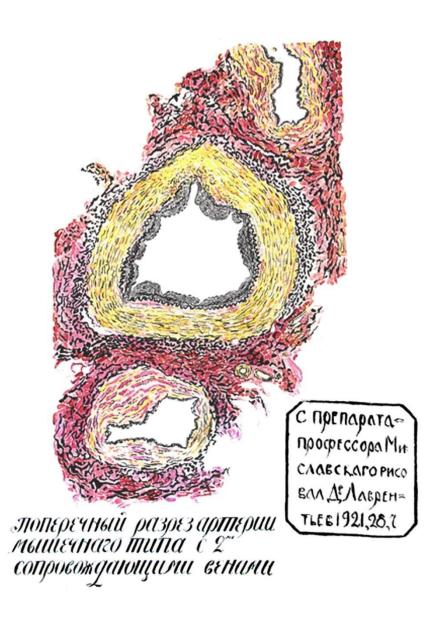
1925 — командировка в Голландию (Утрехтский университет) в лабораторию нейрогистолога И. Буке; овладение нейрофибриллярным методом Бильшовского–Грос

1926 — защита докторской диссертации (о структуре интерстициальных клеток Кахаля; оппоненты — А.Н. Миславский и А.Ф. Самойлов)

1926—1927 — введение метода Бильшовского–Грос в Казанской гистологической лаборатории

1927–1929 – переезд в Москву и работа профессором кафедры гистологии Высшего зоотехнического института (ныне Московская ветакадемия)

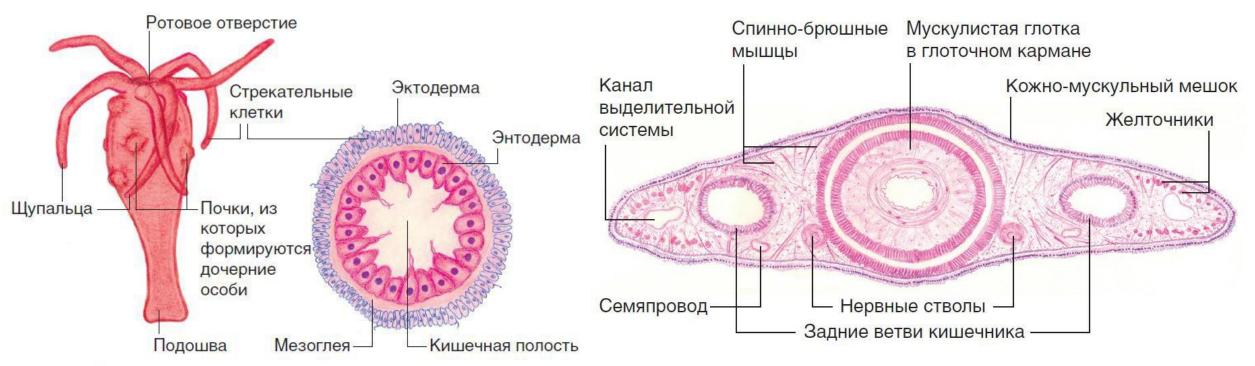

1929–1933— переход на работу зав. кафедрой гистологии I Московского мединститута (в 1929 – 1930 гг. это был мед. факультет МГУ)


1932–1934 — участие в организации ВИЭМ (Всесоюзный институт экспериментальной медицины [институциональная модель Академии медицинских наук СССР, созданной в 1944 г.]) под патронажем А. М. Горького и переезд в Ленинград

1934—1944— возвращение в Москву в связи с переводом ВИЭМ из Ленинграда и заведование отделом морфологии ВИЭМ с одновременным руководством каф. гистологии II Московского мединститута 1939— член-корреспондент АН СССР

Научное наследие Б.И. Лаврентьева

- 1)Общие вопросы теории строения вегетативной нервной системы.
- 2)Учение о нервной трофике.
- 3) Основы интероцепции.
- 4) Гистопатология.
- 5) Методы исследования нервной ткани.



Эволюция кровеносной системы

Межклеточный транспорт многоклеточному организму был необходим с самого момента его возникновения (циркуляция жидкости в неоформленных ходах и щелях по принципу «вешних вод») для доставка питательных веществ. У низших беспозвоночных животных (губки, кишечнополостные [гидра], плоские черви [планария]) дыхание и доставка кислорода происходят путём диффузии через покровные ткани в тканевую жидкость.

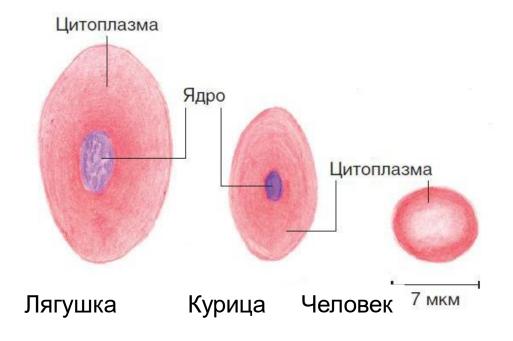
У млекопитающих такой способ питания клеток сохранился, например, в эпителии, хряще, роговице, хрусталике.

^АГидра обыкновенная

Молочно-белая планария

С усложнением организма внутренняя среда организма перестала быть прозрачной и проницаема для кислорода. Впервые незамкнутая сосудистая система, содержащая гемолимфу, появляется у членистоногих и моллюсков, как средство быстрой доставки глубоколежащим тканям необходимый кислород. В гемолимфе растворен дыхательный пигмент гемоцианин, который содержит медь и при связывании с кислородом дает голубой цвет. Гемолимфа из сосудов изливается в полости тела, а затем собирается в сосуды для возвращения к сердцу и органам дыхания.

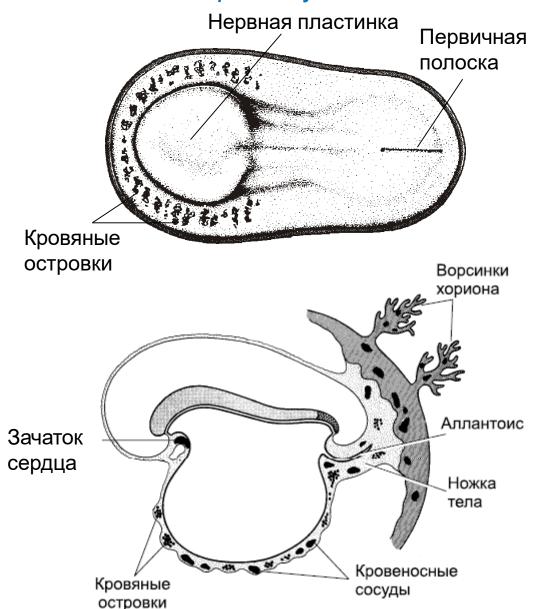
Дождевой червь


Замкнутая кровеносная система впервые появилась у беспозвоночных (представителей кольчатых червей), в которой циркулируют связывающие кислород дыхательные пигменты (например, эритрокруорин — дает красный цвет).

Если сравнить жидкость, которая имеется в организме с тем количеством жидкости, которое вмещается в нашей кровеносной системе и лимфатической, то оказывается, что очень немного из той жидкости, которая находится в нашем теле, циркулирует по этим системам.

Эволюция кроветворной системы

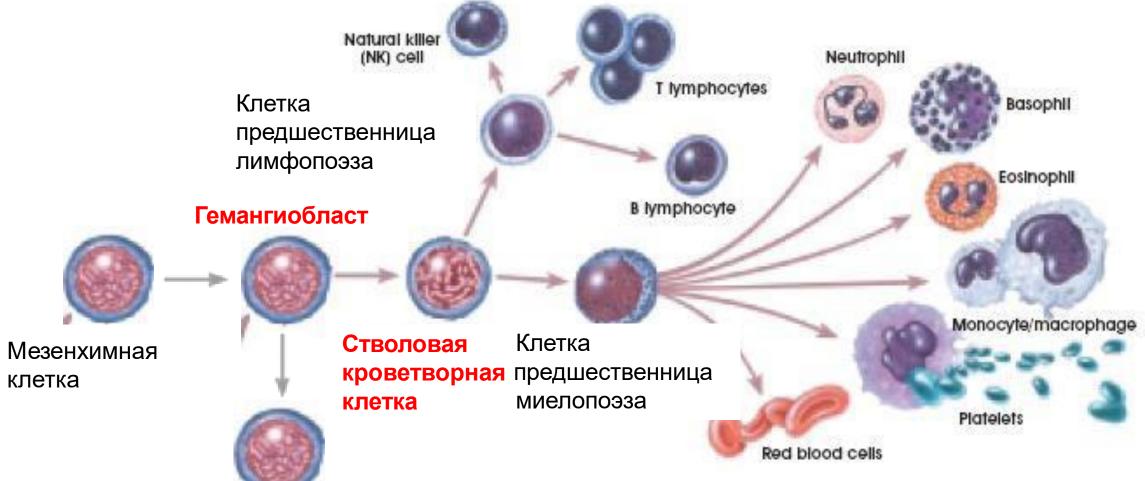
С возникновением кровеносной системы у ранних позвоночных (предков рыб) появились специализированные клетки для транспорта кислорода — эритроциты. Кровяной пигмент внутри клеток стал также выполнять роль буферной системы, отвечающей за поддержание кислотно-щелочного равновесия. Позднее в эволюции животных сосудистая система становится также средством депо и транспортировки подвижных клеточных элементов (лейкоцитов). Какое сродство существует между клеточными элементами? Происхождение! Внезародышевая мезодерма в стенке желточного мешка станет местом формирования кровяных островков и гемангиобластов, из которых будут дифференцироваться все клетки крови и эндотелиальные


клетки сосудов.

Образование первичных эритроцитов происходит очень быстро «на скорую руку». Это крупные эритробласты с ядром и содержащие фетальный гемоглобин, имеющий большее сродство к кислороду. Это имеет большое значение для жизни зародыша. Он получает необходимый кислород. Онтогенез повторяет определенный этап развития филогенеза.

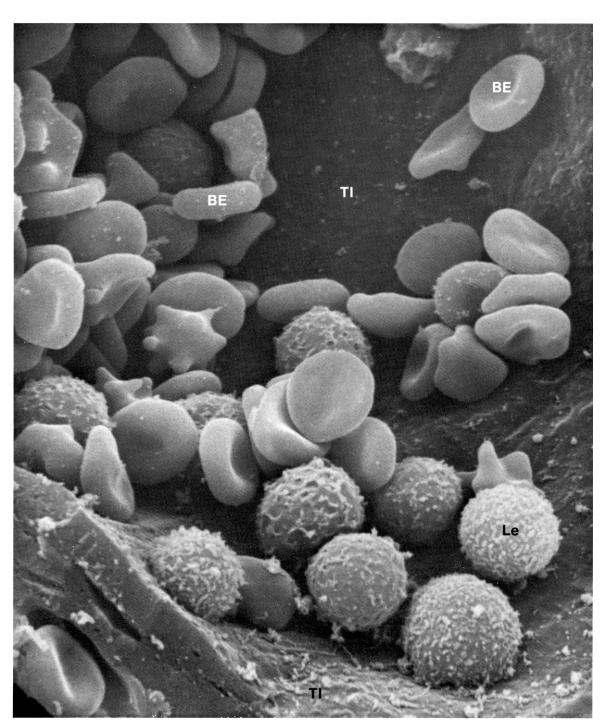
Какие преимущества появились у организма, получившего кровеносную систему? Концепция «организм как целое».

Перед растущим организмом стояла задача: как можно быстрее использовать питательный запас желточного мешка. Возникает канализация, необходимая для того, чтобы доставить этот желток зародышу.


В течение 3-й недели в стенке желточного мешка из клеток мезенхимы формируются кровяные островки — место первичного гемопоэза и васкулогенеза.

Постепенно весь желток обрастает сосудистой сетью, которая затем соединяется в более мощный ствол (желточные вены, направляющиеся к сердцу).

Дробление человеческого зародыша совершается не так, как у ланцетника, а по дискоидальному типу, напоминая, что человек прошел стадии такого дробления, где было в яйце много желтка и где дробление было неполным дискоидальным. Повторяется и развитие желточного мешка, хотя внутри у него желтка нет. Там содержится жидкость даже не особенно богатая белком, но сама форма остается такой, как если бы здесь был желток.

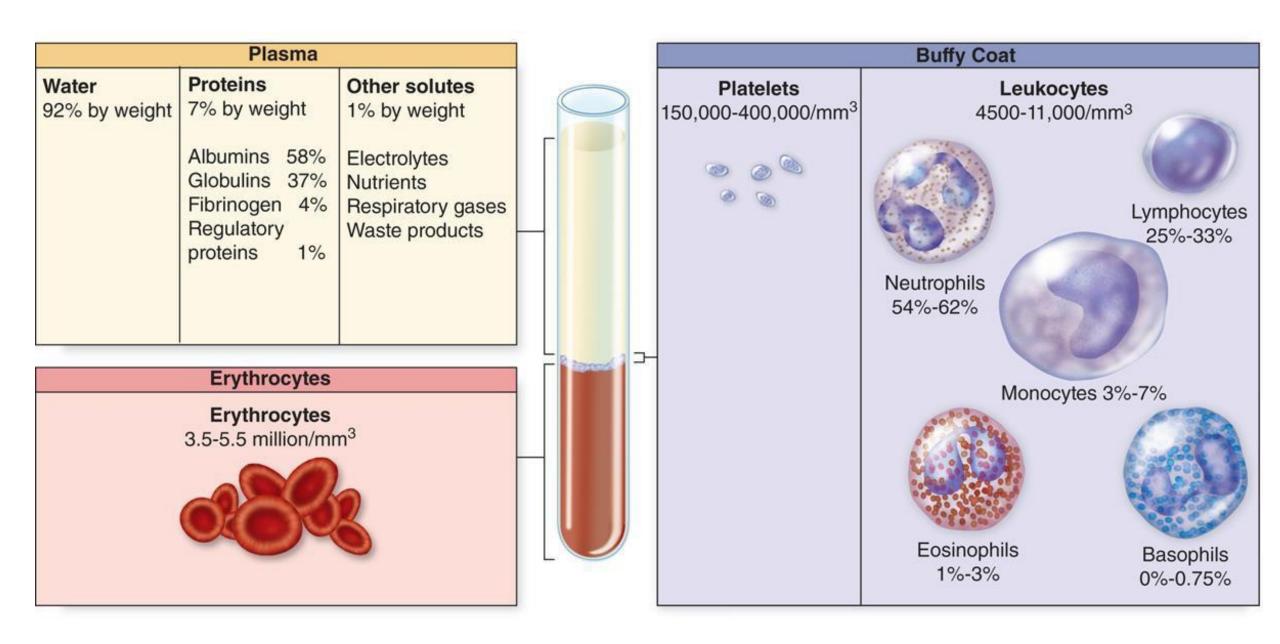

Таким образом, онтогенез повторяет определенный этап развития филогенеза.

Гемангиобласт

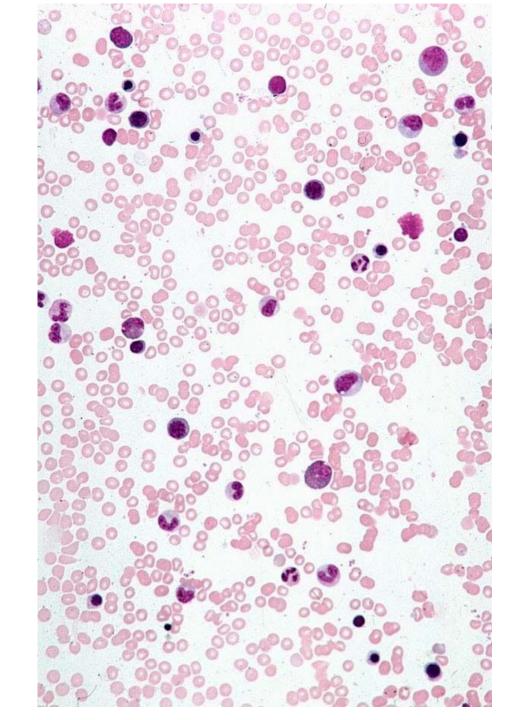
Стволовая эндотелиальная клетка Гемангиобласты, клетки предшественники стволовой кроветворной клетки и эндотелиальных клеток сосудов, дифференцируются из внезародышевой мезодермы.

Морфоген Ihh (Indian hedgehog), VEGF, ретиноевая кислота секретируются клетками внезародышевой энтодермы и стимулируют дифференцировку гемангиобластов.

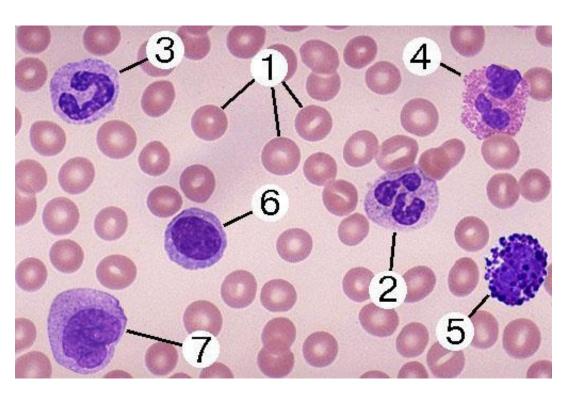
У взрослого общий объём циркулирующей крови около 5л; 1л депонирован в селезёнке; составляет 6 – 8% массы тела.


Форменные элементы

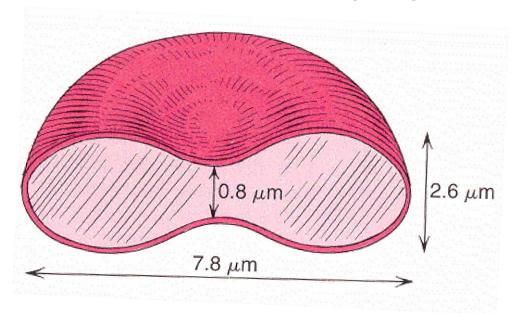
- >Эритроциты
- ➤ Лимфоциты
- ➤ Моноциты
- ≻Нейтрофилы
- >Эозинофилы
- ➤ Базофилы
- ➤ Тромбоциты (кровяные пластинки)
- ➤ Микровезикулы


Плазма (92% вода, 7% белки, 1% электролиты, продукты обмена, газы)

- >Альбумины (осмотическое давление)
- ≻Бета глобулины (транспорт гормонов, ионов металлов, липидов)
- ➤ Гамма глобулины (иммуноглобулины, AT)
- ≻Коагулянты и антикоагулянты


Сыворотка — плазма без фибриногена

1 мкл (микролитр) равен 1 мм³ (кубическому миллиметру).



Мазок крови. Окраска по Романовскому–Гимзе

- 1 эритроциты;
- 2— сегментоядерный нейтрофил;
- 3 палочкоядерный нейтрофил;
- 4 эозинофил;
- 5 базофил;
- 6 лимфоцит;
- 7 моноцит.

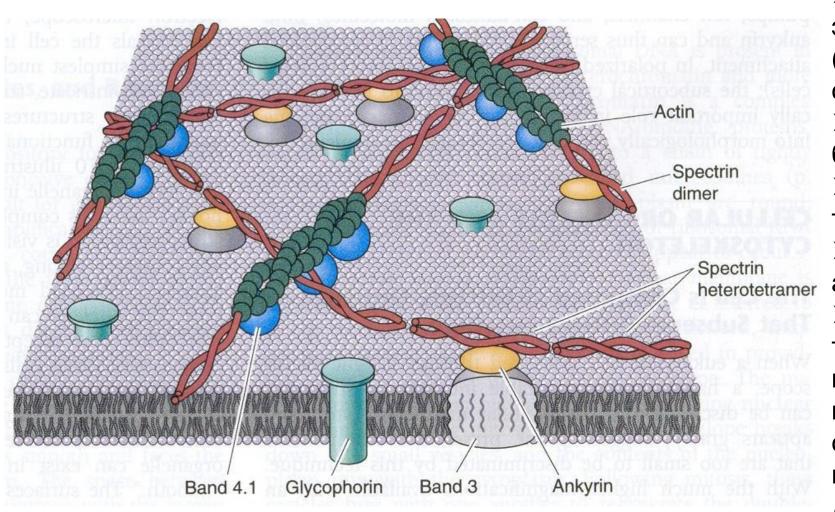
Эритроцит — транспортёр кислорода

- ➤ Образуется в красном костном мозге.
- ≽Безъядерная клетка (двояковогнутый диск), отсутствует большинство органелл (рибосомы и митохондрии в т.ч.).
- В цитоплазме гемоглобин и карбоангидраза.
- ➤Жизнеобеспечение путём гликолиза (GLUT1, ферменты).
- ≻Продолжительность жизни 100-120 суток.
- ➤ Элиминация из кровяного русла в селезёнке, печени, красном костном мозге (фагоцитоз макрофагами).

Количество: $4,5-6,5\times10^{12}$ /л у мужчин; $3,9-5,6\times10^{12}$ /л у женщин.

Гематокрит — % отношение объёма эритроцитов к объёму крови:

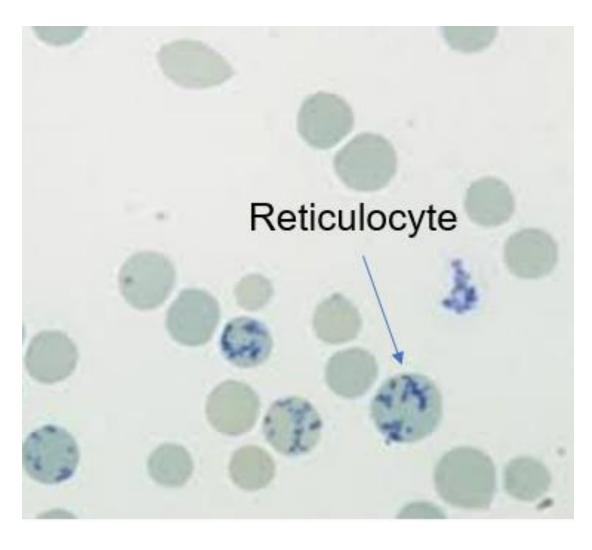
у мужчин — 40–50%, у женщин — 35–45%, у детей до 10 лет — 45–65%.

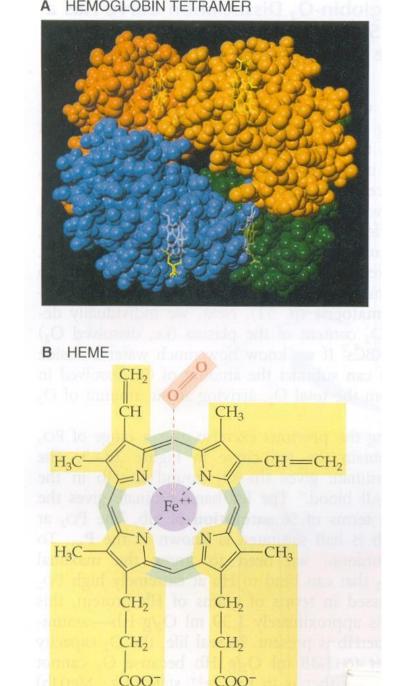

Скорость оседания эритроцитов (СОЭ). У женщин от 2 до 15 мм/час, у мужчин — 2-10 мм/час. Отражает соотношение фракций белков плазмы, увеличивается при воспалении.

<u>Анизоцитоз</u> — появление эритроцитов аномальных размеров (микроциты, макроциты).


Причины — дефекты некоторых ферментов в эритроцитах.

<u>Пойкилоцитоз</u> — присутствие в крови эритроцитов аномальной формы (сфероциты, дрепаноциты [серповидная форма]). Причины — дефекты белков цитоскелета, гемоглобина.


Примембранный цитоскелет


- ➤ Спектрин поддерживает форму эритроцита. Сфероцитоз (эллиптоцитоз) — мутация гена спектрина
- ➤Анкирин прикрепляет спектрин к белку 3 полосы
- ≻Белок полосы 3 анионный транспортёр (обмен HCO₃- на Cl-)
- ≽Белок полосы 4.1 соединяет актиновые нити
- ➤ Гликофорины А и В трансмембранные гликопротеины, несут антигены групповой принадлежности MNS. Могут служить рецепторами для малярийного плазмодия Plasmodium falciparum.

Ретикулоциты

- Незрелые «юные» эритроциты поступающие в кровоток, где он созревает в полноценные эритроциты в течение 1-2 дней.
- Составляет около 1–2% от общего числа эритроцитов.
- Характеризуются наличием рибосомальной РНК, которая при окрашивании специальными красителями проявляется в виде сетчатой структуры.
- Оценка количества ретикулоцитов позволяет диагностировать такие состояния, как анемия (количество ретикулоцитов увеличивается при усиленном эритропоэзе для компенсации кровопотери).

Гемоглобин (Hb) составляет ≈98 % массы белков цитоплазмы эритроцитов

Молекула Нb — тетрамер, состоящий из четырёх полипептидных цепей глобина, каждая из которых ковалентно связана с одной молекулой гема.

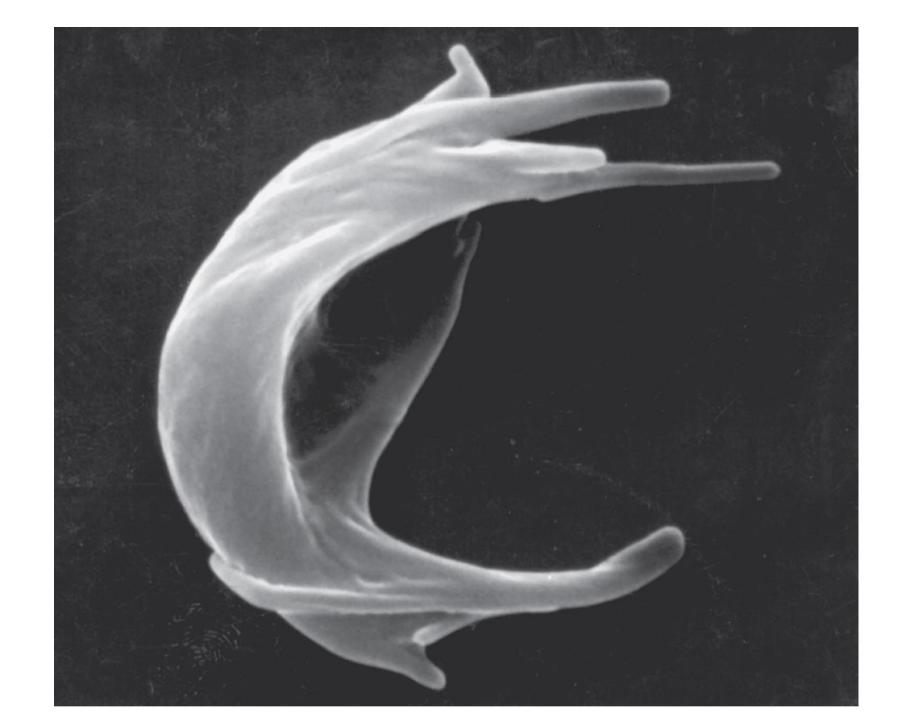
Концентрация Hb в крови:

у мужчин 135-175 г/л; у женщин 120-160 г/л

Гем построен из четырёх молекул пиррола, образующих порфириновое кольцо, в центре которого находится атом железа.

Одна молекула гемоглобина может связывать 4 молекулы кислорода.

Гемоглобины


Дефинитивные гемоглобины

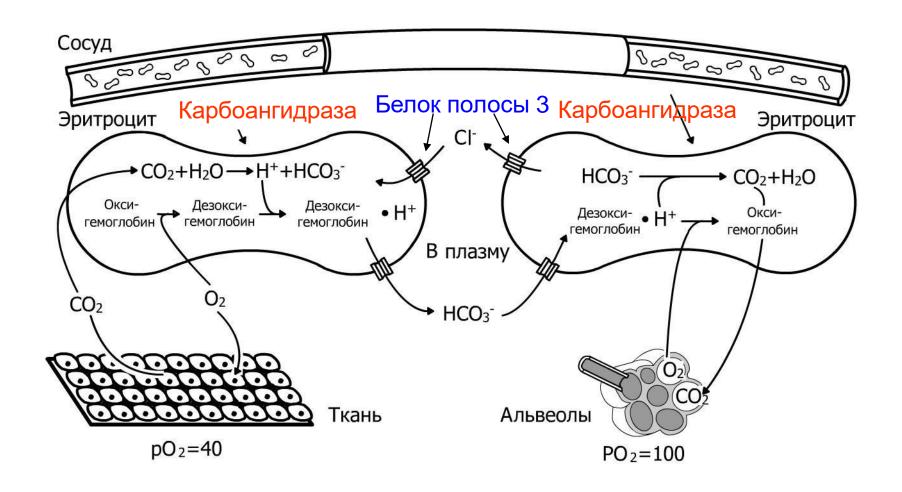
HbA₁ (основной) состоит из двух α и двух β глобиновых CE ($\alpha_2\beta_2$), HbA₂ (2-3% от общего гемоглобина) состоит из двух α и двух δ глобиновых CE ($\alpha_2\delta_2$).

- **Талассемии** группа врожденных микроцитарных гемолитических анемий, характеризующихся отсутствием или сниженной экспрессией генов, кодирующих α (α талассемия) или β (β -талассемия) цепи глобинов.
- **≻Серповидно-клеточная анемия.** Эритроциты содержат HbS (мутация в 6-м положении β-цепи, Glu→Val), имеют форму серпа, что увеличивает риск повреждения и гибели эритроцитов, приводящей к анемии.

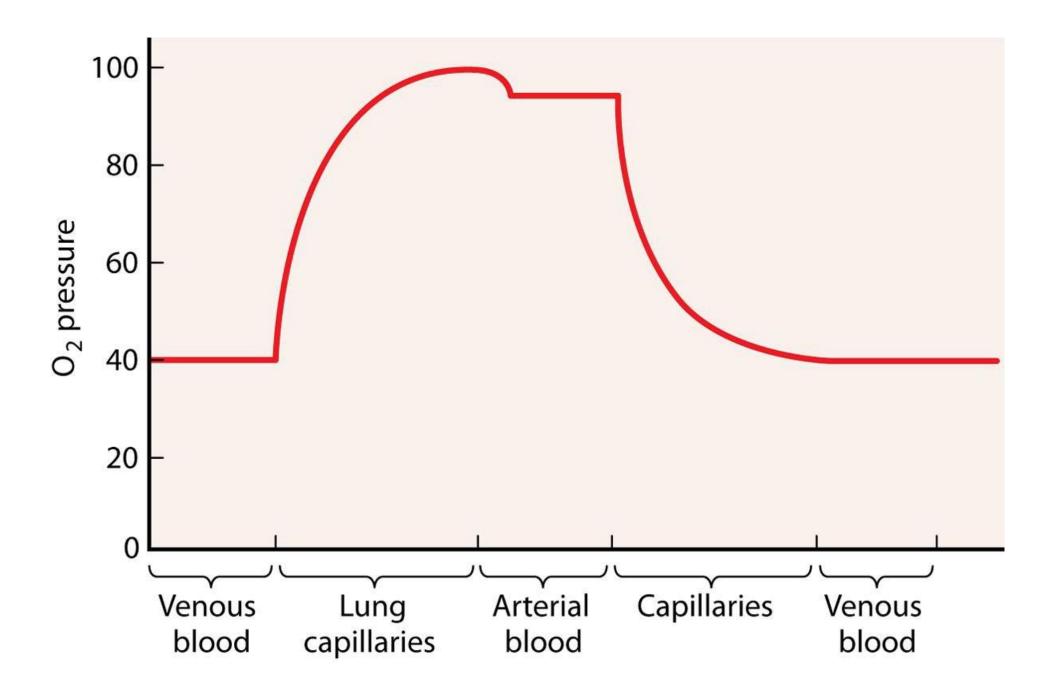
Фетальный гемоглобин состоит из двух α и двух γ глобиновых CE ($\alpha_2\gamma_2$). НbF обладает большим сродством к кислороду, что позволяет эритроцитам плода извлекать кислород из материнских эритроцитов, содержащих HbA.

2,3-Бифосфоглицерат. В зрелых эритроцитах матери 2,3-бифосфоглицерат (промежуточный продукт гликолиза) активно связывается с β -субъединицей глобина, что снижает сродство Hb материнских эритроцитов к O_2 и способствует диссоциации O_2 из капилляров матери в капилляры плода. Содержание 2,3-Бифосфоглицерата в эритроцитах регулируется гуморальными факторами, например, йодсодержащими гормонами.

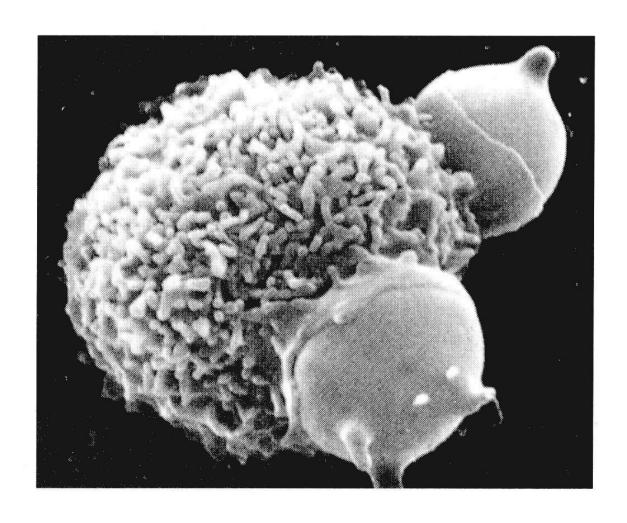
Формы гемоглобина


Оксигемоглобин. В лёгких при повышенном рО $_2$ Hb присоединяет О $_2$, образуя оксигемоглобин. Для присоединения и отделения О $_2$ необходимо, чтобы атом железа гема был в восстановленном состоянии (Fe $^{2+}$).

Метгемоглобин — Нь с Fe^{3+} , прочно связывает O_2 , так что отделение кислорода затруднено. Это приводит к нарушениям газообмена в тканях (метгемоглобинемия). Образование метгемоглобина в эритроцитах может быть наследственным или приобретённым. В последнем случае это результат воздействия на эритроциты сильных окислителей. К ним относят нитраты и неорганические нитриты, лекарственные препараты (сульфаниламиды) и местные анестетики (лидокаин).


Карбоксигемоглобин. Окись углерода СО (угарный газ) связывается с Hb в 200 раз легче чем с O₂, образуя карбоксигемоглобин. При отравлении угарным газом назначают оксигенотерапию (100% O₂) с целью конкурентного замещения СО в молекуле Hb на O₂. (карбоксигемоглобин)

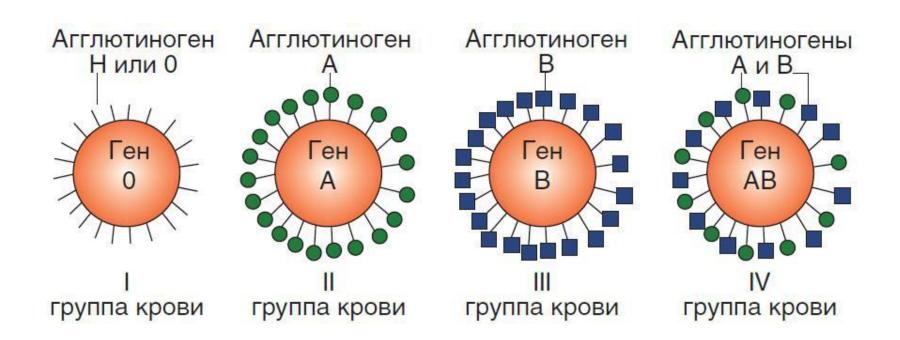
Гликозилированный Hb (Hb_{A1c}) — биохимический показатель крови. **1c** указывает, что глюкоза необратимо присоединилась к N-концу β -цепи Hb (до распада эритроцита). В норме Hb_{A1c} составляет менее 4%. Содержание Hb_{A1c} увеличено при сахарном диабете пропорционально содержанию глюкозы в крови (до 20%). Повышение Hb_{A1c} свидетельствует об увеличенном содержании глюкозы в крови на протяжении предыдущих 3-х месяцев — срока жизни эритроцитов.


Газообмен

Одна молекула гемоглобина транспортирует 4 молекулы O_2 (оксигемоглобин) CO_2 транспортируется в плазме как бикарбонат ион (HCO_3^-)

Гибель и разрушение эритроцитов

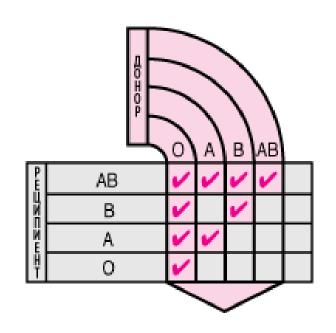
- Деградированный белок полосы 3 антиген стареющих эритроцитов.
- Макрофаги селезёнки, печени, красного костного мозга фагоцитируют эритроциты, закончившие жизненный цикл.
- При разрушении Нb освобождаются:
- (1) глобин (расщепляется в лизосомах);
- (2) ионы железа (трансферрин переносит ионы железа в костный мозг и печень для эритропоэза);
- (3) билирубин (водонерастворимый, токсичный) в комплексе с альбумином транспортируется в печень. В гепатоцитах билирубин связывается с глюкуроновой кислотой (водорастворимый, нетоксичный) и выводится как желчный пигмент.


В мембране эритроцита присутствует множество антигенных детерминант (Аг), взятых за основу для определения групповой принадлежности крови

Имя	Символ	Ген(ы)	Соединение	Kell	KEL	KEL	Zn-зависимая эндопептидаза
(AB0)	AB0	AB0	Галактозил(амино)трансфераза	Kidd	JK	SLC14A1	Переносчик мочевины
Chido/Rodgers	CH/RG	C4A, C4B		Knops	KN	CR1	Рецептор 1 комплемента
Colton	СО	AQP1	Аквапорин 1	Kx	XK	XK	Трансмембранный белок
Cromer	CROM	DAF	CD55	Landsteiner– Wiener	LW	ICAM4	Молекула межклеточной адгезии CAM4
Diego	DI	SLC4A1	Анионообменник, полоса 3 эритроцита	Lewis	LE	FUT3	Фукозилтрансфераза 3
Dombrock	DO	DO	АДФ-рибозил трансфераза 4	Lutheran	LU	LU	Молекула адгезии В-лимфоцитов
Duffy	FY	FY	Рецептор ИЛ8	MNS	MNS	GYPA, GYPB, GYPE	Гликофорины А, В, Е
Gerbich	GE	GYPC	Гликофорины C,D	Ok	OK	BSG	Базигин (эммприн)
Globoside	GLOB	B3GALT3	β-1,3-Галактозилтрансфераза 3	P	P1	P1	Олигосахарид (параглобозид)
GIL	GIL	AQP3	Аквапорин 3	Raph	RAPH	CD151	CD151
Н	Н	FUT1	Фукозилтрансфераза 1	Rh	RH	RHD, RHCE	
I	I	GCNT2	Глюкозаминил (N-ацетил) трансфераза 2	Scianna	SC	ERMAP	
Indian	IN	CD44	Десмойокин	Xg	XG	XG, MIC2	Поверхностноклеточный Аг с 50%-й гомологией с CD99
John Milton Hagen	JMH	SEMA7A	Семафорин 7А	Yt	YT	ACHE	Ацетилхолинэстераза

Группы крови

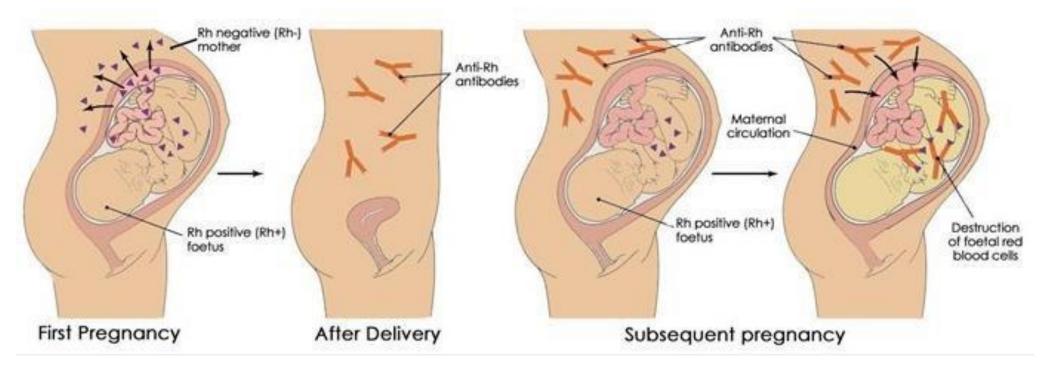
В клинической практике при переливании крови (гемотрансфузия) или её компонентов (эритроцитарная масса, плазма) биологическую совместимость крови донора и реципиента определяют по антигенам систем AB0 (4 группы) и Rh фактора (2 группы).


Группы крови AB0. Аллели гена AB0 (9q34.1-q34.2) кодируют три полипептида (A, B, 0 [множественный аллелизм]), два из них функционально активные (гликозилтрансферазы А [переносит N-ацетил-D-галактозамин] и В [переносит D-галактозу]), а полипептид 0 — не активен. Субстратами гликозилирования являются углеводные части гликолипидов и гликопротеинов мембраны эритроцитов.

Групповая совместимость крови донора и реципиента

Гемагглютинины (антитела) к агглютиногенам A и B образуются в результате латентной иммунизации антигенами микрофлоры кишечника, перекрёстно реагирующих с антигенами A и B. Антитела образуются только в том случае, если они отсутствуют на собственных эритроцитах (правило Ландштейнера).

У новорождённого в мембране эритроцитов агглютиногены уже экспрессированы, тогда как естественные гемагглютинины (антитела) появляются в течение Зго месяца постнатального периода и относятся к иммуноглобулинам класса М (IgM); до их появления в сыворотке присутствуют материнские гемагглютинины (иммуноглобулины класса G (IgG).


- ▶I (0) группа крови (универсальный донор) экспрессия полипептида 0, в плазме гемагглютинины А и В. Антитела реципиента не будут «атаковать» эритроциты донора.
- ➤ II (A) группа крови экспрессия гликозилтрансферазы A, в плазме гемагглютинины B
- ➤III (В) группа крови экспрессия гликозилтрансферазы В, в плазме гемагглютинины А
- ➤IV (AB) группа крови (универсальный реципиент) экспрессия гликозилтрансферазы A и B, гемагглютинины в плазме отсутствуют.

Резус (Rh) фактор. К Rh-положительным относятся лица, у которых в мембране эритроцита экспрессируются белки семейства Rh — антигены D, C, c, E, e. Антигены Rh, трансмембранные белки с молекулярной массой 30–32 кДа, имеют 12 трансмембранных сегментов и являются каналами для ионов аммония (NH4+) и карбоксила (HCOO-).

Ген *RHD* кодирует D-белок, ген *RHCE* кодирует белки C/c и E/e (вероятно, с альтернативным сплайсингом про-мРНК). Ген *RHAG* кодирует гликопротеин, который регулирует экспрессию гена *RHD* и *RHCE*.

Антиген D обладает выраженной иммуногенностью и считается главным фактором групповой принадлежности по резус-фактору. Резус-положительной (Rh+) считается кровь, эритроциты которой несут антиген D, а резус-отрицательной (Rh-) — кровь с эритроцитами, в мембране которых отсутствует антиген D. Действие доминантного аллеля гена полностью подавляет действие рециссивного аллеля (**полное доминирование**).

Резус-конфликт — гуморальный иммунный ответ резус-отрицательной матери на белок D резус-положительного плода

- У Rh- матери антирезусные AT образуются после первых родов, при попадании Rh+ эритроцитов плода в кровь матери (смешение крови в родах). Новорожденный остаётся здоровым.
- ▶ Во время второй беременности при попадании через плаценту в кровь Rh+ плода антирезусные AT матери взаимодействуют с антигеном D на эритроцитах плода, что приводит к их разрушению и развитию гемолитической болезни плода и новорожденного.
- ▶ Для предупреждения резус-конфликта Rh- матери во время первой беременности Rh+ плодом или в течение 72 ч после родов внутримышечно вводят антитела против D-белка. Таким образом, Rh+ эритроциты плода, попавшие в кровь матери, разрушаются введёнными антителами против D-белка до того, как иммунная система матери начнёт вырабатывать собственные антитела на антиген D Rh+ плода.