«Здоровый и больной мозг: от молекулярной физиологии к патологии, клинике и лечению»

Наиль Бурнашев

IV Патологические процессы в мозге и их коррекция

- 1. Основные патологические процессы в мозге.
- 2. Генетические заболевания. Аутизм
- 3. Клеточные и молекулярные механизмы развития эпилепсии
- 4. Синаптическая дисфункция при распространенных заболеваниях ЦНС. Болезнь Альцгеймера
- 5. Принципы разработки современных методов лечения заболеваний ЦНС

Источники активных форм кислорода

-Утечка электронов из ЦПЭ и непосредственное их взаимодействие с кислородом - основной путь образования активных форм кислорода в большинстве клеток.

$$O_2 \xrightarrow{\overline{e}} O_2^{\overline{e}} \xrightarrow{\overline{e}, 2H+} H_2O_2 \xrightarrow{e, H+} H_2O + OH^*$$

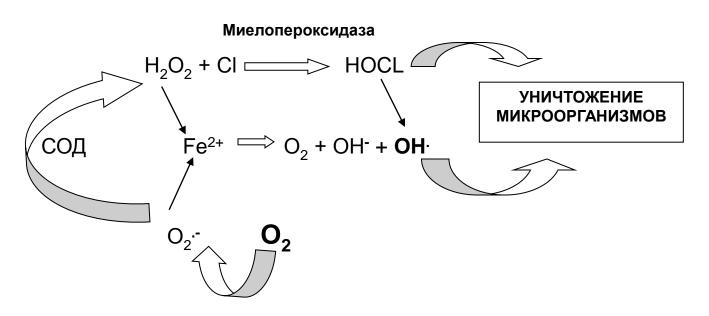
-**Многие оксидазы** - ферменты, непосредственно восстанавливающие кислород, образуют пероксид водорода - H₂O₂ по схеме:

$$O_2 + SH_2 \rightarrow S + H_2O_2$$

где SH₂ - окисляемый субстрат.

-Наличие в клетках Fe²⁺ или ионов других переходных металлов увеличивает скорость образования гидроксильных радикалов

$$Fe^{2+} + H_2O_2 \rightarrow Fe^{3+} + OH^- + OH^-$$
.

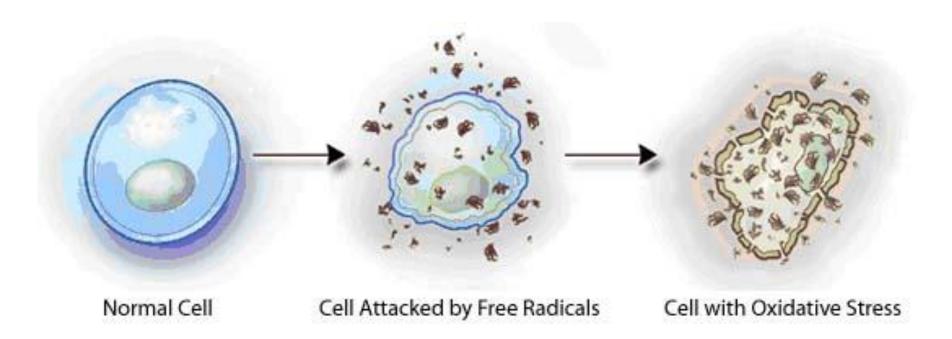

Активированные метаболиты кислорода

Вид соединений	Название	Химическая формула
Радикалы	Супероксид	O ₂ ·-
	Гидроксильный радикал	OH-
	Синглетный кислород	$^{1}O_{2}$
	Липоперекисный и другие перекисные радикалы	LOO· ROO·
	Оксид азота	NO·
Нерадикальные соединения	Пероксинитрит	ONOO-
	Перекись водорода	H_2O_2
	Гипохлорная кислота	HOCL
	Перекиси липидов	LOOH

Физиологическая роль активных форм кислорода

- 1. Активные формы кислорода принимают участие в клеточной системе иммунитета, обеспечивая функцию всех фагоцитов в борьбе с инфекцией
- 2. Регуляция синтеза простагландинов, тромбоксанов и лейкотриенов.
- 3. Окислительное разрушение ксенобиотиков (чужеродных для организма экзогенных веществ), деструкция собственных поврежденных или аномальных клеток.
- 4. Регуляция роста, пролиферации и дифференцировки клеток.
- 5. Участие в обновлении и модификации клеточных мембран.
- 6. Регуляция апоптоза.

Антимикробная функция фагоцитов


НАДФН-оксидаза фагоцитов

Повреждающее действие активных форм кислорода

Наиболее серьезными следствием токсического действия активных форма кислорода являются:

- 1. Выраженная активация свободнорадикального *перекисного окисления липидов* (ПОЛ).
- 2. Повреждение ДНК и РНК
- 3. Повреждение белков, в том числе и белков- ферментов.

Повреждающее действие активных форм кислорода

Основные звенья антиоксидантной защиты организма

Анатомо-физиологическая система	Биохимическая система
Система каскадов PO_2 от атмосферного воздуха до митохондрий	Антиоксидантные ферменты и белки
Уменьшение регионарного кровотока и микроциркуляции в ответ на повышение концентрации ${\rm PO}_2$ в ткани	Низкомолекулярные антиоксиданты
Наличие относительно большой межкапиллярной дистанции	
Способность цитохромоксидазы переносить на кислород именно 4 электрона	

Системы защиты клеток от активных форм кислорода

Ферменты антиоксидантного действия

Супероксидисмутаза (СОД) превращает супероксидные анионы в пероксид водорода:

$$2 \mathbf{O}_2^* + 2\mathbf{H}^+ \rightarrow \mathbf{H}_2\mathbf{O}_2 + \mathbf{O}_2$$

Пероксид водорода, который может инициировать образование самой активной формы ОН•, разрушается ферментом каталазой:

$$2H_2O_2 \rightarrow 2H_2O + O_2$$
.

Глутатионпероксидаза - важнейший фермент, обеспечивающий инактивацию активных форм кислорода.

Сульфгидрильная группа глутатиона (GSH) служит донором электронов и, окисляясь, образует дисульфидную форму глутатиона.

$$H_2O_2 + 2 GSH \rightarrow 2 H_2O + G-S-S-G.$$

Окисленный глутатион восстанавливается глутатионредуктазой: $GS-SG+NADPH+H^+ \rightarrow 2\ GSH+NADP^+.$

Схема биохимической системы антиоксидантной защиты организма (природные антиоксиданты)

Вид антиоксидантов	Локализация в организме	Механизм действия
Ферменты, белки		
Супероксиддисмутаза	Митохондрии и цитоплазма клеткок	Дисмутация анионов супероксида
Каталаза	Клетки, пероксисомы	
Глутатионпероксидаза	Клетки	Разрушение ${ m H_2O_2}$ и гидроперекисей
Другие пероксидазы	Клеточные мембраны, митохондрии, цитозоль	Разрушение H_2O_2
Ферритин	Цитоплазма	Связывание железа
Трансферрин	Плазма крови	Связывание и транспорт железа
Церулоплазмин	Плазма крови	Связывание Си и Fe, инактивация супероксида

Вид антиоксидантов	Локализация в организме	Механизм действия
--------------------	-------------------------	-------------------

Низкомолекулярные антиоксиданты		
Витамин Е	Клетки (цитоплазматические мембраны, мембраны митохондрий и лизосом), кровь	Нейтрализация супероксида, радикалов оксида азота и перекисных радикалов
Витамин С	Цитозоль, внеклеточная жидкость	Нейтрализация супероксида, гидроксильного радикала, восстановление окисленного витамина Е
Прочие витамины, напр, витамины B_6 , P , PP , K (кроме витамина D)	Цитозоль, внеклеточная жидкость	Нейтрализация кислородных радикалов
Каротиноиды	Мембраны клеток	Защита клеток от синглетного кислорода
Восстановленный глутатион и другие SH-содержащие соединения	Клетки	Защита клеток от радикалов кислорода, предупреждение ПОЛ
Убихинон	Митохондрии	Ингибирование ПОЛ
Мочевина, мочевая кислота	Внеклеточная жидкость	Связывание ${\rm H_2O_2}$, ингибирование ПОЛ
Билирубин	кровь	Нейтрализация кислородных радикалов
Карнозин	Клетки мозга, сердца и скелетных мышц	Нейтрализация АФК, ингибирование ПОЛ
Селен	Гормоны, белки и ферменты, в частности глутатионпероксидаза	Разрушение H_2O_2 и гидроперекисей
Углекислый газ (CO ₂)	Клетки, плазма крови	Ингибирование образования супероксида

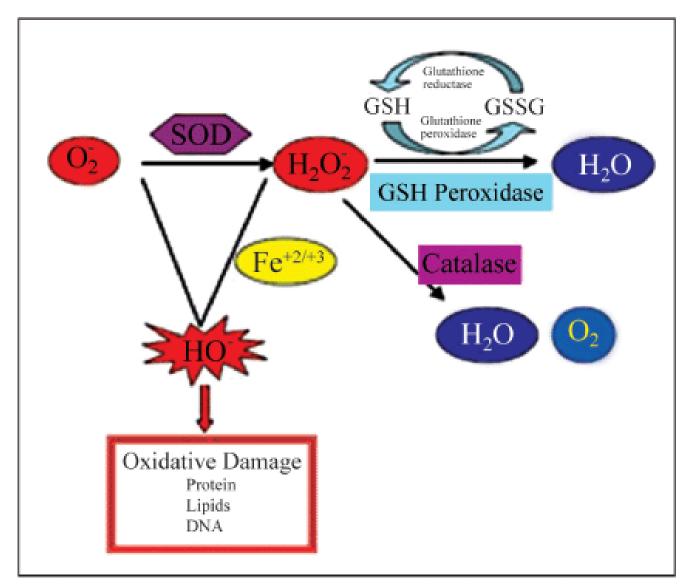
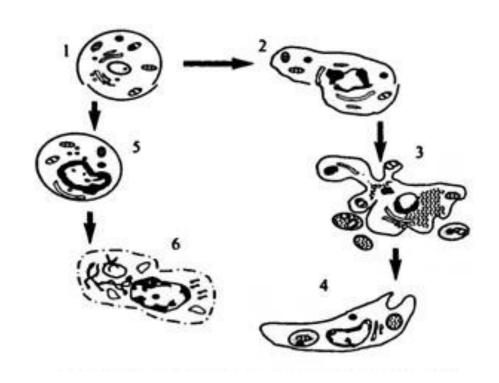



Figure 1 - An unbalance between the production of prooxidants and antioxidants in cells might lead to a strengthened production of free radicals like activated oxygen (O₂) and reactive oxygen species which could lead to serious celular damage

Окислительный стресс и его последствия для организма

Апоптоз — физиологическая гибель клеток в живом организме.


апоптоз как физиологический процесс протекает непрерывно на протяжении всей жизни человека, и биологический смысл его заключается в поддержании постоянства клеток и тканей организма, т. е. *тканевого гомеостаза*.

Некроз — гибель клеток и тканей в результате патологических воздействий.

Причины некроза можно объединить в пять групп:

- 1) травматический некроз, который является результатом прямого действия на ткань физических или химических факторов (механических, температурных, радиационных, кислот, щелочей и др.);
- 2) токсический некроз развивается при действии на ткани токсических факторов бактериальной или иной природы;
- 3) трофоневротический некроз, который связан с нарушениями иннервации тканей при заболеваниях центральной или периферической нервной системы;
- 4) аллергический некроз следствие иммунных реакций немедленной или замедленной гиперчувствительности;
- 5) сосудистый некроз, обусловленный прекращением циркуляции крови в артериях, реже в венах.

Последовательность ультраструктурных изменений при некрозе и апоптозе

- 1. Исходно интактная клетка.
- 2. Уплотнение и сегрегация хроматина в ядре.
- 3. Распад ядра на фрагменты и образование апоптозных телец.
- 4. Фагоцитоз апоптозных телец соседней клеткой.
- 5. Ранняя стадия некроза, включающая конденсацию хроматина в нерезко очерченные массы и деградацию цитоплазматических структур.
- 6. Разрушение мембран и дезинтеграция клетки.

Сравнительная характеристика апоптоза и некроза

- **апоптоз** физиологический вид смерти, **некроз** возникает в условиях патологии;
- апоптоз генетически запрограммирован, некроз развивается под воздействием различных повреждающих причин и не связан с геномом клетки;
- апоптоз распространяется только на отдельные клетки, **некроз** развивается на территории ткани и даже целого органа;
- апоптоз не сопровождается дистрофическими изменениями клеток, некрозу предшествует дистрофия, имеющая характер некробиоза;
- апоптоз не сопровождается воспалением, вокруг некроза обязательно развивается воспалительная реакция; апоптоз заканчивается фагоцитозом апоптозных телец соседними клетками, некроз заканчивается аутолизом погибшей ткани;
- после апоптоза восстанавливаются клетки, аналогичные погибшим, на месте некроза обычно разрастается рубцовая соединительная ткань;
- апоптоз не сопровождается активацией внутриклеточных гидролитических ферментов, некроз развивается с помощью гидролаз;
- **апоптоз** не имеет клинических проявлений, **некроз** сопровождается выраженной клинической симптоматикой.

Онкологические заболевания:

- прямой кишки
- печени
- простаты
- лейкемии
- нейробластома

Нейродегенеративные заболевания:

- болезнь Альцгеймера
- болезнь Паркинсона
- болезнь Хантингтона

Гематопоэтические заболевания:

- Апластическая анемия
- миелодиспластический синдром
- Т-клеточная лимфоцитопения

Аутоимунные заболевания:

• системная красная волчанка

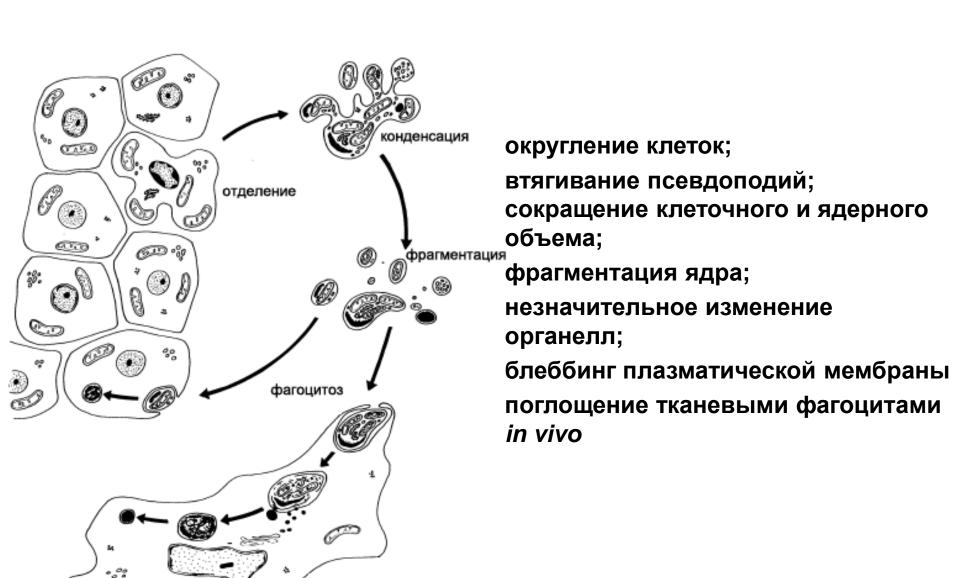
• миастения

Частые инфекции:

Вирусные инфекции

Сердечно-сосудистые заболевания:

- Сердечная недостаточность
- Инфаркт миокарда
- воспаление
- сепсис
- диабет 1 типа

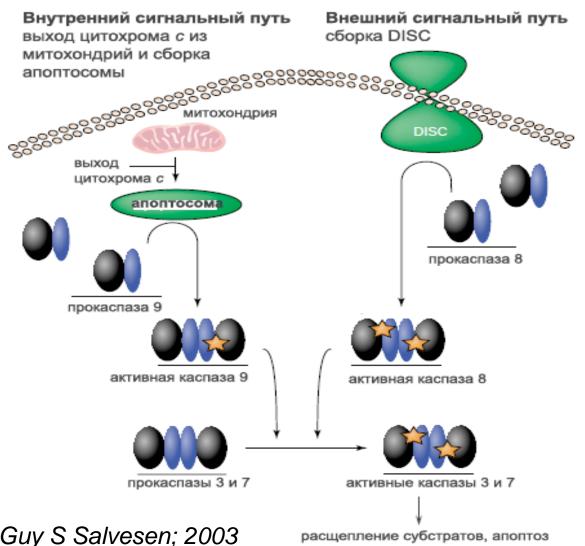

недостаточный

апоптоз

норма

избыточный

Морфологические изменения клеток в процессе апоптоза



J. F. R. Kerr, A. H. Wyllie and A. R. Currie; 1972

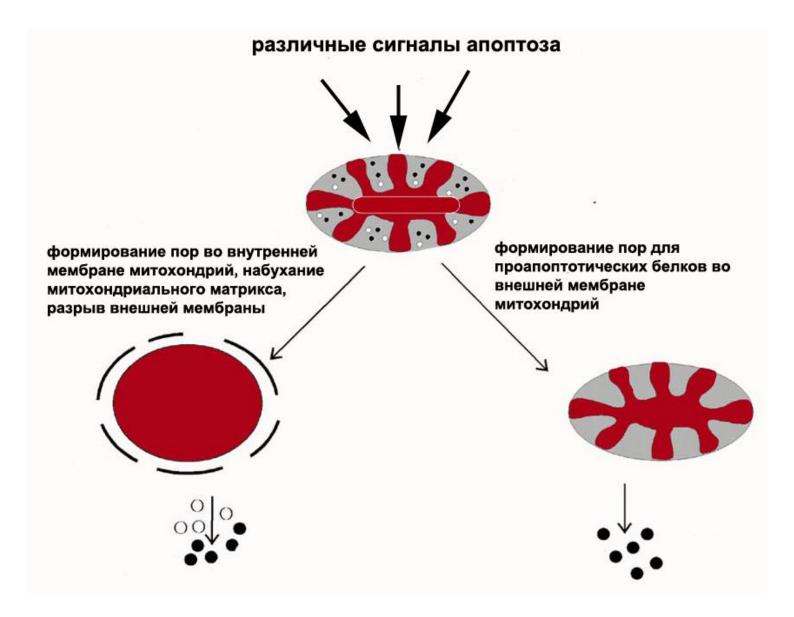
- В биохимическом механизме апоптоза выделяют четыре основных компонента:
- 1) Cys-Asp-протеазы, или каспазы,
- 2) так называемые рецепторы смерти на поверхности клетки,
- 3) митохондрии и выходящий из них цитохром с
- 4) специальные про- и антиапоптозные белки

Две сигнальные платформы для активации каскадов каспаз у млекопитающих

Каспазы (семейство Cys-Asp-протеаз) выполняют центральную роль в запуске апоптоза

Апоптоз одноклеточных организмов

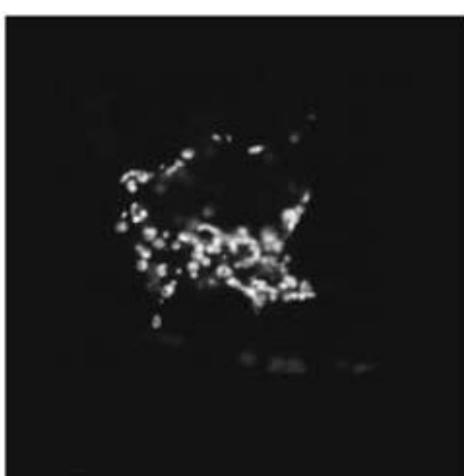
Митохондриям принадлежит центральная роль в осуществлении апоптоза у млекопитающих.


Сигналы от рецепторов смерти или от поврежденных участков клетки сходятся на них, вызывая повышение проницаемости обеих мембран, снижение мембранного потенциала (ДФт) и высвобождение белков апоптоза –

Апоптоз-индуцирующего фактора (AIF),

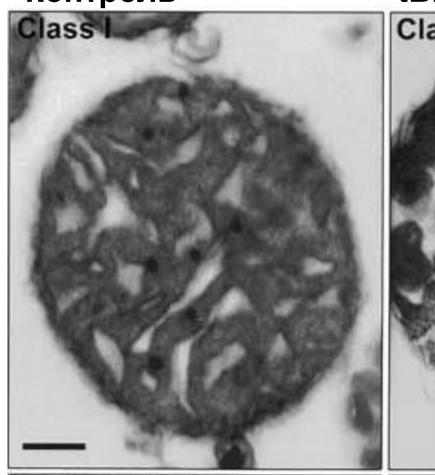
SMAC (second mitochondria-derived activator of caspases)

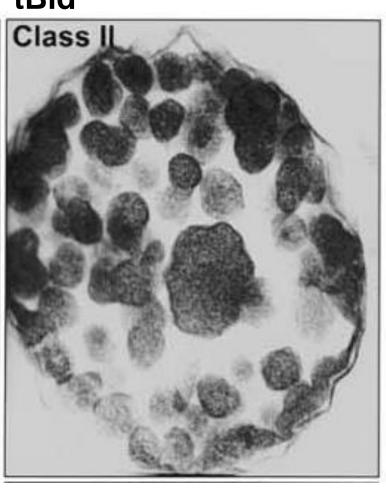
и некоторых прокаспаз – из межмембранного пространства.


Две основные модели, объясняющие выход белков из межмембранного пространства митохондрий

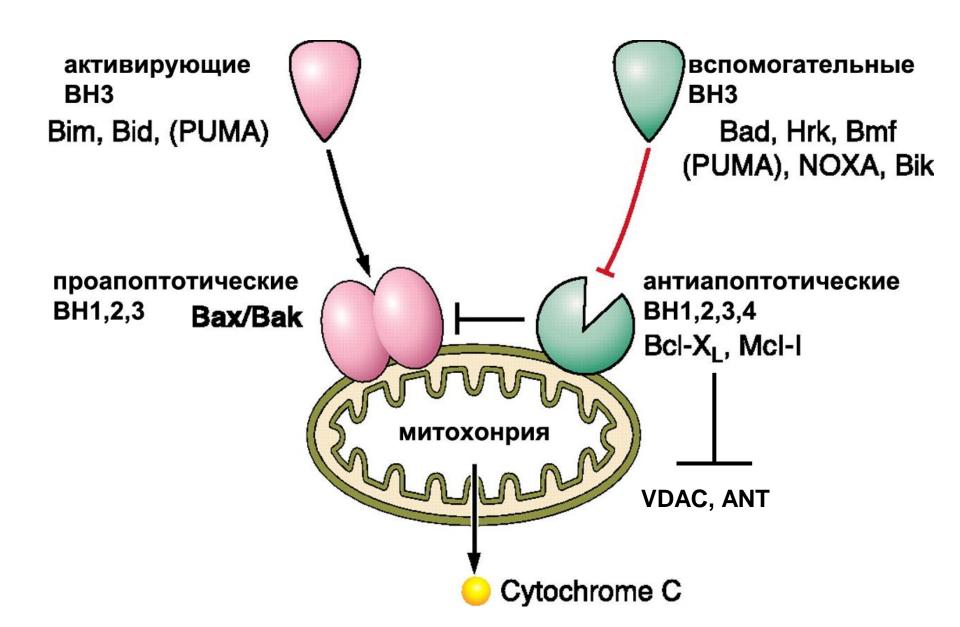
Во время апоптоза происходит дробление митохондриального ретикулума

Контроль Апоптоз

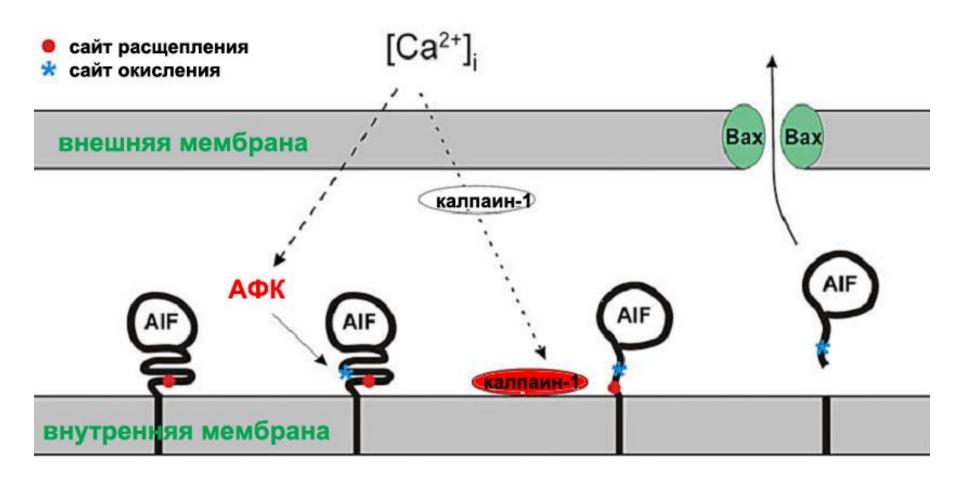




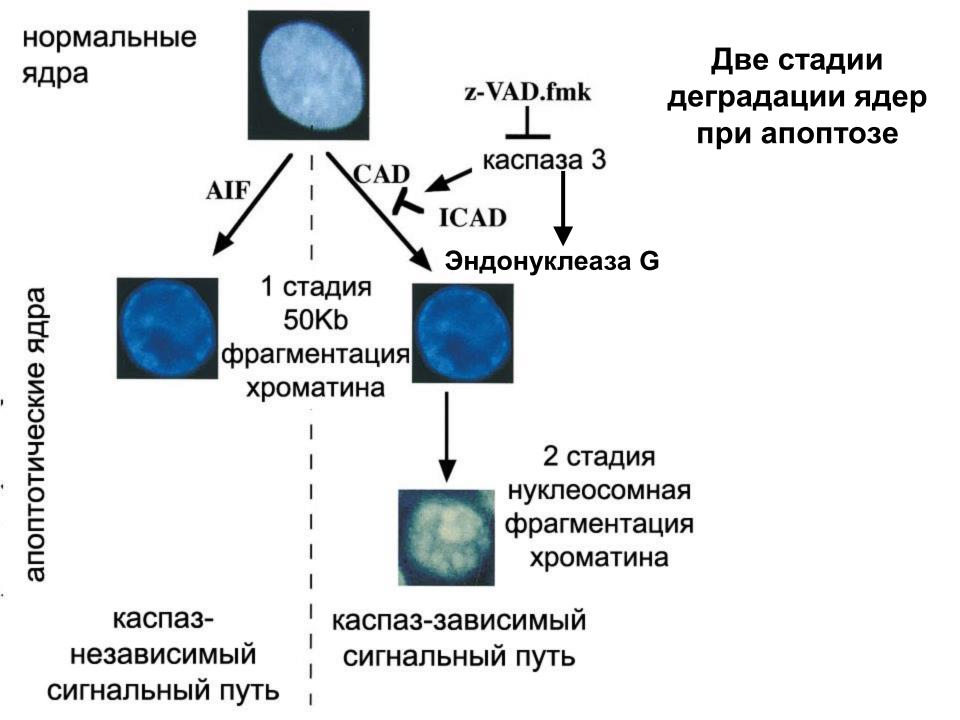
Во время апоптоза происходит перестройка крист митохондрий


Контроль

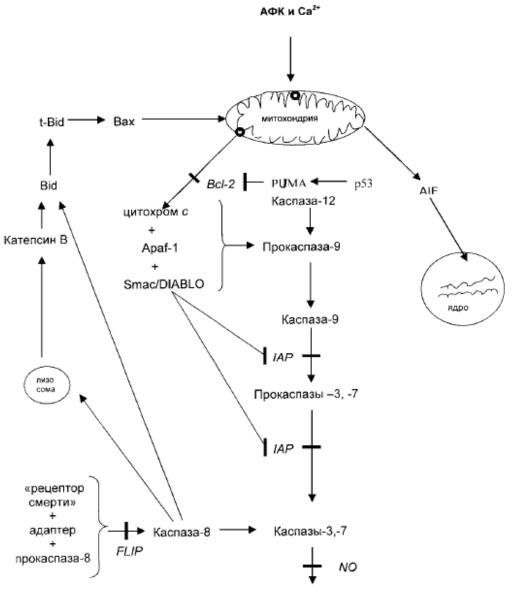
tBid



Белки семейства BCL-2

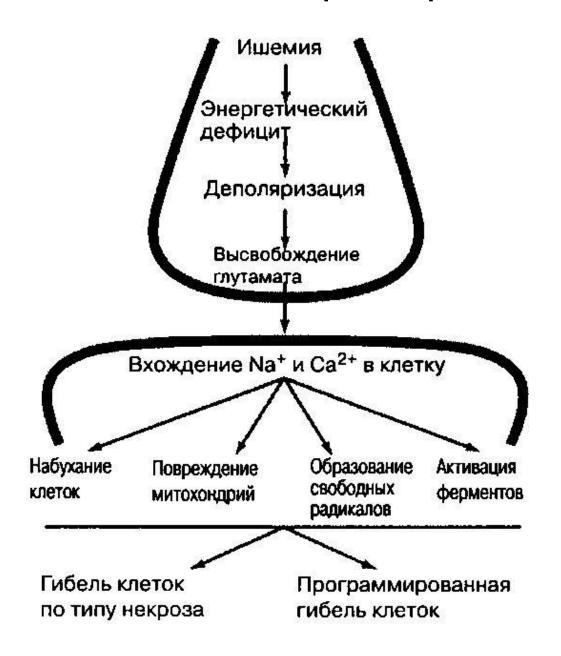


Отделение AIF от внутренней мембраны митохондрий регулируется Ca²⁺ и AФК



нормальная клетка — впоптотическая клетка

Erik Norberg, Sten Orrenius, Boris Zhivotovsky; 2010



Общая схема «классического» апоптоза млекопитающих

Расщепление белков

Патогенез гибели нейронов при ишемии

